Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 13, 2026
-
Free, publicly-accessible full text available June 4, 2026
-
The problem of maximizing the adoption of a product through viral marketing in social networks has been studied heavily through postulated network models. We present a novel data-driven formulation of the problem. We use Graph Neural Networks (GNNs) to model the adoption of products by utilizing both topological and attribute information. The resulting Dynamic Viral Marketing (DVM) problem seeks to find the minimum budget and minimal set of dynamic topological and attribute changes in order to attain a specified adoption goal. We show that DVM is NP-Hard and is related to the existing influence maximization problem. Motivated by this connection, we develop the idea of Dynamic Gradient Influencing (DGI) that uses gradient ranking to find optimal perturbations and targets low-budget and high influence non-adopters in discrete steps. We use an efficient strategy for computing node budgets and develop the “Meta-Influence” heuristic for assessing a node’s downstream influence. We evaluate DGI against multiple baselines and demonstrate gains on average of 24% on budget and 37% on AUC on real world attributed networks. Our code is publicly available at https: //github.com/saurabhsharma1993/dynamic_viral_marketing.more » « lessFree, publicly-accessible full text available April 22, 2026
-
Free, publicly-accessible full text available February 24, 2026
-
Label ranking is introduced as a conceptually new means for prioritizing experiments. Their simplicity, ease of application, and the use of ranking aggregation facilitate their ability to make accurate predictions with small datasets.more » « lessFree, publicly-accessible full text available February 26, 2026
An official website of the United States government

Full Text Available