- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003100000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Arun, Arasu (4)
-
Bonneau, Joseph (2)
-
Setty, Srinath (2)
-
Thaler, Justin (2)
-
Tyagi, Nirvan (2)
-
Choi, Kevin (1)
-
Freitag, Cody (1)
-
Mazières, David (1)
-
Wahby, Riad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
Baldimtsi, Foteini (1)
-
Cachin, Christian (1)
-
Cremers, Cas (1)
-
Kirda, Engin (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Arun, Arasu; Setty, Srinath; Thaler, Justin (, Annual International Conference on the Theory and Applications of Cryptographic Techniques)
-
Tyagi, Nirvan; Arun, Arasu; Freitag, Cody; Wahby, Riad; Bonneau, Joseph; Mazières, David (, ACM Conference on Computer and Communications Security (CCS))Cremers, Cas; Kirda, Engin (Ed.)We introduce the first practical protocols for fully decentralized sealed-bid auctions using timed commitments. Timed commitments ensure that the auction is finalized fairly even if all participants drop out after posting bids or if bidders collude to try to learn the bidder’s bid value. Our protocols rely on a novel non-malleable timed commitment scheme which efficiently supports range proofs to establish that bidders have sufficient funds to cover a hidden bid value. This allows us to penalize users who abandon bids for exactly the bid value, while supporting simultaneous bidding in multiple auctions with a shared collateral pool. Our protocols are concretely efficient and we have implemented them in an Ethereum- compatible smart contract which automatically enforces payment and delivery of an auctioned digital asset.more » « less
-
Choi, Kevin; Arun, Arasu; Tyagi, Nirvan; Bonneau, Joseph (, Financial Cryptography and Data Security 2023)Baldimtsi, Foteini; Cachin, Christian (Ed.)We introduce Bicorn, an optimistically efficient distributed randomness protocol with strong robustness under a dishonest majority. Bicorn is a "commit-reveal-recover" protocol. Each participant commits to a random value, which are combined to produce a random output. If any participants fail to open their commitment, recovery is possible via a single time-lock puzzle which can be solved by any party. In the optimistic case, Bicorn is a simple and efficient two-round protocol with no time-lock puzzle. In either case, Bicorn supports open, flexible participation, requires only a public bulletin board and no group-specific setup or PKI, and is guaranteed to produce random output assuming any single participant is honest. All communication and computation costs are (at most) linear in the number of participants with low concrete overhead.more » « less
An official website of the United States government

Full Text Available