Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce a method for online conformal prediction with decaying step sizes. Like previous methods, ours possesses a retrospective guarantee of coverage for arbitrary sequences. However, unlike previous methods, we can simultaneously estimate a population quantile when it exists. Our theory and experiments indicate substantially improved practical properties: in particular, when the distribution is stable, the coverage is close to the desired level for every time point, not just on average over the observed sequence.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Motivated by the emergence of decentralized machine learning (ML) ecosystems, we study the delegation of data collection. Taking the field of contract theory as our starting point, we design optimal and near-optimal contracts that deal with two fundamental information asymmetries that arise in decentralized ML: uncertainty in the assessment of model quality and uncertainty regarding the optimal performance of any model. We show that a principal can cope with such asymmetry via simple linear contracts that achieve $$1-1/\epsilon$$ fraction of the optimal utility. To address the lack of a priori knowledge regarding the optimal performance, we give a convex program that can adaptively and efficiently compute the optimal contract. We also analyze the optimal utility and linear contracts for the more complex setting of multiple interactions.more » « less
-
Motivated by the emergence of decentralized machine learning (ML) ecosystems, we study the delegation of data collection. Taking the field of contract theory as our starting point, we design optimal and near-optimal contracts that deal with two fundamental information asymmetries that arise in decentralized ML: uncertainty in the assessment of model quality and uncertainty regarding the optimal performance of any model. We show that a principal can cope with such asymmetry via simple linear contracts that achieve $$1-1/\epsilon$$ fraction of the optimal utility. To address the lack of a priori knowledge regarding the optimal performance, we give a convex program that can adaptively and efficiently compute the optimal contract. We also analyze the optimal utility and linear contracts for the more complex setting of multiple interactions.more » « less
-
We present a comprehensive statistical framework to analyze data from genome-wide association studies of polygenic traits, producing interpretable findings while controlling the false discovery rate. In contrast with standard approaches, our method can leverage sophisticated multivariate algorithms but makes no parametric assumptions about the unknown relation between genotypes and phenotype. Instead, we recognize that genotypes can be considered as a random sample from an appropriate model, encapsulating our knowledge of genetic inheritance and human populations. This allows the generation of imperfect copies (knockoffs) of these variables that serve as ideal negative controls, correcting for linkage disequilibrium and accounting for unknown population structure, which may be due to diverse ancestries or familial relatedness. The validity and effectiveness of our method are demonstrated by extensive simulations and by applications to the UK Biobank data. These analyses confirm our method is powerful relative to state-of-the-art alternatives, while comparisons with other studies validate most of our discoveries. Finally, fast software is made available for researchers to analyze Biobank-scale datasets.more » « less