skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biddy, Quentin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rural youth need more opportunities to participate in enriching STEM experiences and career pathways compared to their peers in urban areas. This study explores local mentors' role in shaping these pathways and addressing challenges related to STEM mentoring for rural youth. Through a three-year STEM program incorporating programmable sensor and 3D printing technology curricula, we establish a typology of mentors and examine their interactions with middle school youth. Analyzing recorded youth-mentor interactions, we identified several practical mentoring approaches. Our findings highlight the crucial contribution of mentors in the rural STEM learning ecosystem, as they foster possibilities and open avenues for disadvantaged youth to envision bright futures and dream of exciting opportunities in STEM. 
    more » « less
  2. Abstract The Institute for Student‐AI Teaming (iSAT) addresses the foundational question:how to promote deep conceptual learning via rich socio‐collaborative learning experiences for all students?—a question that is ripe for AI‐based facilitation and has the potential to transform classrooms. We advance research in speech, computer vision, human‐agent teaming, computer‐supported collaborative learning, expansive co‐design, and the science of broadening participation to design and study next generation AI technologies (called AI Partners) embedded in student collaborative learning teams in coordination with teachers. Our institute ascribes to theoretical perspectives that aim to create a normative environment of widespread engagement through responsible design of technology, curriculum, and pedagogy in partnership with K–12 educators, racially diverse students, parents, and other community members. 
    more » « less
  3. Rural students, schools, and communities have unique challenges that hinder academic achievement, growth, and opportunities, compared to other locales. While there is a need to study this community more, there is also a pressing need to bring the local community members together to support the future generation of learners in developing pathways that lead them to future career opportunities. This article focuses on how a Research Practice Partnership (RPP) can be developed in rural communities to support STEM pathways for local middle-school youth. RPPs are often described as long-term collaborations between both researchers and practitioners in which the participating partners leverage research to address specific persistent problems of practice. We present findings from a developing design-based RPP focused on bringing community members and organizations together to co-design opportunities for underserved youth in rural mountain communities. 
    more » « less
  4. This article describes a sensor-based physical computing system, called the Data Sensor Hub (DaSH), which enables students to process, analyze, and display data streams collected using a variety of sensors. The system is built around the portable and affordable BBC micro:bit microcontroller (expanded with the gator:bit), which students program using a visual, cloud-based programming environment intended for novices. Students connect a variety of sensors (measuring temperature, humidity, carbon dioxide, sound, acceleration, magnetism, etc.) and write programs to analyze and visualize the collected sensor data streams. The article also describes two instructional units intended for middle grade science classes that use this sensor-based system. These inquiry-oriented units engage students in designing the system to collect data from the world around them to investigate scientific phenomena of interest. The units are designed to help students develop the ability to meaningfully integrate computing as they engage in place-based learning activities while using tools that more closely approximate the practices of contemporary scientists as well as other STEM workers. Finally, the article articulates how the DaSH and units have elicited different kinds of teacher practices using student drawn modeling activities, facilitating debugging practices, and developing place-based science practices. 
    more » « less
  5. null (Ed.)
    This paper describes the design and classroom implementation of a week-long unit that aims to integrate computational thinking (CT) into middle school science classes using programmable sensor technology. The goals of this sensor immersion unit are to help students understand why and how to use sensor and visualization technology as a powerful data-driven tool for scientific inquiry in ways that align with modern scientific practice. The sensor immersion unit is anchored in the investigation of classroom data where students engage with the sensor technology to ask questions about and design displays of the collected data. Students first generate questions about how data data displays work and then proceed through a set of programming exercises to help them understand how to collect and display data collected from their classrooms by building their own mini data displays. Throughout the unit students draw and update their hand drawn models representing their current understanding of how the data displays work. The sensor immersion unit was implemented by ten middle school science teachers during the 2019/2020 school year. Student drawn models of the classroom data displays from four of these teachers were analyzed to examine students’ understandings in four areas: func- tion of sensor components, process models of data flow, design of data displays, and control of the display. Students showed the best understanding when describing sensor components. Students exhibited greater confusion when describing the process of how data streams moved through displays and how programming controlled the data displays. 
    more » « less