Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The rapid evaporation of 1:1 solutions of diethynylpyridines and N -halosuccinimides, that react together to form haloalkynes, led to the isolation of unreacted 1:1 cocrystals of the two components. The 1:1 cocrystal formed between 2,6-diethynylpyridine and N -iodosuccinimide (C 4 H 4 INO 2 ·C 9 H 5 N) contains an N -iodosuccinimide–pyridine I...N halogen bond and two terminal alkyne–succinimide carbonyl C—H...O hydrogen bonds. The three-dimensional extended structure features interwoven double-stranded supramolecular polymers that are interconnected through halogen bonds. The cocrystal formed between 3,5-diethynylpyridine and N -iodosuccinimide (C 4 H 4 INO 2 ·C 9 H 5 N) also features an I...N halogen bond and two C—H...O hydrogen bonds. However, the components form essentially planar double-stranded one-dimensional zigzag supramolecular polymers. The cocrystal formed between 3,5-diethynylpyridine and N -bromosuccinimide (C 4 H 4 BrNO 2 ·C 9 H 5 N) is isomorphous to the cocrystal formed between 3,5-diethynylpyridine and N -iodosuccinimide, with a Br...N halogen bond instead of an I...N halogen bond.Free, publicly-accessible full text available July 1, 2023
-
The treatment of 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine with a threefold excess of 1,2,3,5-tetrafluoro-4,6-diiodobenzene in dichloromethane solution led to the formation of the unexpected 1:2 title co-crystal, C 14 H 13 N 3 ·2CF 4 I 2 . In the extended structure, two unique C—I...N halogen bonds from one of the 1,2,3,5-tetrafluoro-4,6-diiodobenzene molecules to the pyrimidine N atoms of the 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine molecule generate [110] chains and layers of these chains are π-stacked along the a- axis direction. The second 1,2,3,5-tetrafluoro-4,6-diiodobenzene molecule resides in channels formed parallel to the a -axis direction between stacks of 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine molecules and interacts with them via C—I...π(alkyne) contacts.
-
This study expands and combines concepts from two of our earlier studies. One study reported the complementary halogen bonding and π-π charge transfer complexation observed between isomeric electron rich 4-N,N-dimethylaminophenylethynylpyridines and the electron poor halogen bond donor, 1-(3,5-dinitrophenylethynyl)-2,3,5,6-tetrafluoro-4-iodobenzene while the second study elaborated the ditopic halogen bonding of activated pyrimidines. Leveraging our understanding on the combination of these non-covalent interactions, we describe cocrystallization featuring ditopic halogen bonding and π-stacking. Specifically, red cocrystals are formed between the ditopic electron poor halogen bond donor 1-(3,5-dinitrophenylethynyl)-2,4,6-triflouro-3,5-diiodobenzene and each of electron rich pyrimidines 2- and 5-(4-N,N-dimethyl-aminophenylethynyl)pyrimidine. The X-ray single crystal structures of these cocrystals are described in terms of halogen bonding and electron donor-acceptor π-complexation. Computations confirm that the donor-acceptor π-stacking interactions are consistently stronger than the halogen bonding interactions and that there is cooperativity between π-stacking and halogen bonding in the crystals.
-
We report the design, synthesis, and crystal structure of a conjugated aryleneethynyl molecule, 2-(2-{4,5-dimethoxy-2-[2-(2,3,4-trifluorophenyl)ethynyl]phenyl}ethynyl)-6-[2-(pyridin-2-yl)ethynyl]pyridine, C 30 H 17 F 3 N 2 O 2 , that adopts a planar rhombus conformation in the solid state. The molecule crystallizes in the space group P -1, with Z = 2, and features two intramolecular sp 2 -C—H...N hydrogen bonds that co-operatively hold the arylethynyl molecule in a rhombus conformation. The H atoms are activated towards hydrogen bonding since they are situated on a trifluorophenyl ring and the H...N distances are 2.470 (16) and 2.646 (16) Å, with C—H...N angles of 161.7 (2) and 164.7 (2)°, respectively. Molecular electrostatic potential calculations support the formation of C—H...N hydrogen bonds to the trifluorophenyl moiety. Hirshfeld surface analysis identifies a self-complementary C—H...O dimeric interaction between adjacent 1,2-dimethoxybenzene segments that is shown to be common in structures containing that moiety.
-
A halogen-bonded supramolecular ladder comprised of a novel pyrimidine-based cyclobutane photoproduct synthesized in the organic solid state via a [2 + 2] photoreaction is reported. The photoproduct rctt -tetrakis(5′-pyrimidyl)cyclobutane functions as rungs while the linear divergent halogen-bond donor 1,4-diiodoperchlorobenzene acts as the rails. Our report also confirms the structure and stereochemistry of the tetrapyrimidyl cyclobutane ring system.
-
The formation of a photoreactive cocrystal based upon 1,2-diiodoperchlorobenzene ( 1,2-C 6 I 2 Cl 4 ) and trans -1,2-bis(pyridin-4-yl)ethylene ( BPE ) has been achieved. The resulting cocrystal, 2( 1,2-C 6 I 2 Cl 4 )·( BPE ) or C 6 Cl 4 I 2 ·0.5C 12 H 10 N 2 , comprises planar sheets of the components held together by the combination of I...N halogen bonds and halogen–halogen contacts. Notably, the 1,2-C 6 I 2 Cl 4 molecules π-stack in a homogeneous and face-to-face orientation that results in an infinite column of the halogen-bond donor. As a consequence of this stacking arrangement and I...N halogen bonds, molecules of BPE also stack in this type of pattern. In particular, neighbouring ethylene groups in BPE are found to be parallel and within the accepted distance for a photoreaction. Upon exposure to ultraviolet light, the cocrystal undergoes a solid-state [2 + 2] cycloaddition reaction that produces rctt -tetrakis(pyridin-4-yl)cyclobutane ( TPCB ) with an overall yield of 89%. A solvent-free approach utilizing dry vortex grinding of the components also resulted in a photoreactive material with a similar yield.
-
The potential of pyrimidines to serve as ditopic halogen-bond acceptors is explored. The halogen-bonded cocrystals formed from solutions of either 5,5′-bipyrimidine (C 8 H 6 N 4 ) or 1,2-bis(pyrimidin-5-yl)ethyne (C 10 H 6 N 4 ) and 2 molar equivalents of 1,3-diiodotetrafluorobenzene (C 6 F 4 I 2 ) have a 1:1 composition. Each pyrimidine moiety acts as a single halogen-bond acceptor and the bipyrimidines act as ditopic halogen-bond acceptors. In contrast, the activated pyrimidines 2- and 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine (C 14 H 13 N 3 ) are ditopic halogen-bond acceptors, and 1:1 halogen-bonded cocrystals are formed from 1:1 mixtures of each of the activated pyrimidines and either 1,2- or 1,3-diiodotetrafluorobenzene. A 1:1 cocrystal was also formed between 2-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine and 1,4-diiodotetrafluorobenzene, while a 2:1 cocrystal was formed between 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine and 1,4-diiodotetrafluorobenzene.