skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Botelho, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In order to facilitate student learning, it is important to identify and remediate misconceptions and incomplete knowledge pertaining to the assigned material. In the domain of mathematics, prior research with computer-based learning systems has utilized the commonality of incorrect answers to problems as a way of identifying potential misconceptions among students. Much of this research, however, has been limited to the use of close-ended questions, such as multiple-choice and fill-in-the-blank problems. In this study, we explore the potential usage of natural language processing and clustering methods to examine potential misconceptions across student answers to both close- and openended problems. We find that our proposed methods show promise for distinguishing misconception from non-conception, but may need further development to improve the interpretability of specific misunderstandings exhibited through student explanations. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less
    Free, publicly-accessible full text available July 5, 2024
  3. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  5. Teachers often rely on the use of a range of open-ended problems to assess students’ understanding of mathematical concepts. Beyond traditional conceptions of student openended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended work common in mathematics. While recent developments in areas of natural language processing and machine learning have led to automated methods to score student open-ended work, these methods have largely been limited to textual answers. Several computer-based learning systems allow students to take pictures of hand-written work and include such images within their answers to open-ended questions. With that, however, there are few-to-no existing solutions that support the auto-scoring of student hand-written or drawn answers to questions. In this work, we build upon an existing method for auto-scoring textual student answers and explore the use of OpenAI/CLIP, a deep learning embedding method designed to represent both images and text, as well as Optical Character Recognition (OCR) to improve model performance. We evaluate the performance of our method on a dataset of student open-responses that contains both text- and image-based responses, and find a reduction of model error in the presence of images when controlling for other answer-level features. 
    more » « less
    Free, publicly-accessible full text available July 5, 2024
  6. Teachers often rely on the use of a range of open-ended problems to assess students' understanding of mathematical concepts. Beyond traditional conceptions of student open-ended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended work common in mathematics. While recent developments in areas of natural language processing and machine learning have led to automated methods to score student open-ended work, these methods have largely been limited to textual answers. Several computer-based learning systems allow students to take pictures of hand-written work and include such images within their answers to open-ended questions. With that, however, there are few-to-no existing solutions that support the auto-scoring of student hand-written or drawn answers to questions. In this work, we build upon an existing method for auto-scoring textual student answers and explore the use of OpenAI/CLIP, a deep learning embedding method designed to represent both images and text, as well as Optical Character Recognition (OCR) to improve model performance. We evaluate the performance of our method on a dataset of student open-responses that contains both text- and image-based responses, and find a reduction of model error in the presence of images when controlling for other answer-level features. 
    more » « less
    Free, publicly-accessible full text available July 5, 2024
  7. Feedback is a crucial factor in mathematics learning and instruction. Whether expressed as indicators of correctness or textual comments, feedback can help guide students’ understanding of content. Beyond this, however, teacher-written messages and comments can provide motivational and affective benefits for students. The question emerges as to what constitutes effective feedback to promote not only student learning but also motivation and engagement. Teachers may have different perceptions of what constitutes effective feedback utilizing different tones in their writing to communicate their sentiment while assessing student work. This study aims to investigate trends in teacher sentiment and tone when providing feedback to students in a middle school mathematics class context. Toward this, we examine the applicability of state-of-the-art sentiment analysis methods in a mathematics context and explore the use of punctuation marks in teacher feedback messages as a measure of tone. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  8. Teachers often rely on the use of a range of open-ended problems to assess students’ understanding of mathematical concepts. Beyond traditional conceptions of student open- ended work, commonly in the form of textual short-answer or essay responses, the use of figures, tables, number lines, graphs, and pictographs are other examples of open-ended work common in mathematics. While recent developments in areas of natural language processing and machine learning have led to automated methods to score student open-ended work, these methods have largely been limited to textual an- swers. Several computer-based learning systems allow stu- dents to take pictures of hand-written work and include such images within their answers to open-ended questions. With that, however, there are few-to-no existing solutions that support the auto-scoring of student hand-written or drawn answers to questions. In this work, we build upon an ex- isting method for auto-scoring textual student answers and explore the use of OpenAI/CLIP, a deep learning embedding method designed to represent both images and text, as well as Optical Character Recognition (OCR) to improve model performance. We evaluate the performance of our method on a dataset of student open-responses that contains both text- and image-based responses, and find a reduction of model error in the presence of images when controlling for other answer-level features. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  9. Feedback is a crucial factor in mathematics learning and instruction. Whether expressed as indicators of correctness or textual comments, feedback can help guide students’ understanding of content. Beyond this, however, teacher-written messages and comments can provide motivational and affective benefits for students. The question emerges as to what constitutes effective feedback to promote not only student learning but also motivation and engagement. Teachers may have different perceptions of what constitutes effective feedback utilizing different tones in their writing to communicate their sentiment while assessing student work. This study aims to investigate trends in teacher sentiment and tone when providing feedback to students in a middle school mathematics class context. Toward this, we examine the applicability of state-of-the-art sentiment analysis methods in a mathematics context and explore the use of punctuation marks in teacher feedback messages as a measure of tone. 
    more » « less
    Free, publicly-accessible full text available June 30, 2024
  10. Background: Teachers often rely on the use of open‐ended questions to assess students' conceptual understanding of assigned content. Particularly in the context of mathematics; teachers use these types of questions to gain insight into the processes and strategies adopted by students in solving mathematical problems beyond what is possible through more close‐ended problem types. While these types of problems are valuable to teachers, the variation in student responses to these questions makes it difficult, and time‐consuming, to evaluate and provide directed feedback. It is a well‐studied concept that feedback, both in terms of a numeric score but more importantly in the form of teacher‐authored comments, can help guide students as to how to improve, leading to increased learning. It is for this reason that teachers need better support not only for assessing students' work but also in providing meaningful and directed feedback to students. Objectives: In this paper, we seek to develop, evaluate, and examine machine learning models that support automated open response assessment and feedback. Methods: We build upon the prior research in the automatic assessment of student responses to open‐ended problems and introduce a novel approach that leverages student log data combined with machine learning and natural language processing methods. Utilizing sentence‐level semantic representations of student responses to open‐ended questions, we propose a collaborative filtering‐based approach to both predict student scores as well as recommend appropriate feedback messages for teachers to send to their students. Results and Conclusion: We find that our method outperforms previously published benchmarks across three different metrics for the task of predicting student performance. Through an error analysis, we identify several areas where future works maybe able to improve upon our approach. 
    more » « less