skip to main content


Search for: All records

Creators/Authors contains: "Catete, Veronica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Existing research has primarily delved into the realm of computer science outreach aimed at K-12 students, with a focus on both informal and non-formal approaches. However, a noticeable research gap exists when it comes to cybersecurity outreach tailored specifically for underserved secondary school students. This article addresses this void by presenting an iterative pilot of a cybersecurity curriculum. This innovative curriculum integrates a one-week summer camp and a series of 1.5-hour workshops designed to provide students with a comprehensive understanding of cybersecurity. The overarching goal of this approach is to foster wider participation in the field of computing, particularly in the realm of cybersecurity. This research aims to spark interest among students who may currently face limited access to computing resources. The cybersecurity lessons featured in this curriculum adhere to the standards set by Cyber.org, an organization supported by the Cybersecurity and Infrastructure Agency (CISA). Key topics covered include networking, the confidentiality, integrity, and availability (CIA) triad, and operating system security. This paper not only outlines the process of creating and implementing these cybersecurity lessons but also emphasizes the iterative refinement process they underwent. The discussion primarily revolves around the valuable insights gained from implementing this curriculum at two prominent public universities in the eastern United States. By bridging the research gap and focusing on practical applications, this initiative contributes significantly to the broader discourse on cybersecurity education for underserved secondary school students. 
    more » « less
    Free, publicly-accessible full text available June 26, 2025
  2. Background. Software Engineering (SE) is a new and emerging topic in secondary computer science classrooms. However, a review of the recent literature has identified an overall lack of reporting on the development of SE secondary curriculum. Previous studies also report low student engagement when teaching these concepts. Objectives. In this experience report, we discuss the development of a 9-week, project-based learning (PBL) SE curriculum for secondary students. During this curriculum, students create a socially relevant project in groups of two to three. We discuss displays of participant engagement with CS concepts through the PBL pedagogy and the SE curriculum. Method. We examine participant engagement through group artifact interviews about student experiences during a week-long, virtual summer camp that piloted activities from our curriculum. During this camp, students followed a modified SE life cycle created by the authors of the paper. Findings. Participants showed engagement with the curriculum through various aspects of PBL, such as autonomy, creativity, and personal interest in their project topic. Implications. The lessons learned from this experience report suggest that PBL pedagogy can increase student engagement when teaching CS concepts, and this pedagogy provides detail and structure for future secondary SE curriculum implementations to support educators in the classroom 
    more » « less
    Free, publicly-accessible full text available September 27, 2024
  3. Computer Science (CS) Frontiers is a 4-module curriculum, 9 weeks each, designed to bring the frontiers of computing to high school girls for exploration and development. Our prior work has showcased the work in developing and piloting our first three modules, Distributed Computing, Artificial Intelligence (AI), and the Internet of Things (IoT). During the summer of 2022, we piloted the completed curricula, including the new Software Engineering module, with 56 high school camp attendees. This poster reports on the newly developed software engineering module, the experiences of 7 teachers and 11 students using the module, and our plans for improving this module prior to its release in formal high school classrooms. Initial survey and interview data indicate that teachers became comfortable with facilitating the open-endedness of the final projects and that students appreciated the connections to socially relevant topics and the ability of their projects to help with real-world problems such as flood prevention and wheelchair accessibility. The CS Frontiers curriculum has been added to course offerings in Tennessee and adoption through the North Carolina Department of Public Instruction is currently underway. Teachers from Tennessee, North Carolina, Massachusetts, and New York have piloted the materials. Together with researchers, we are working to package the course and curricula for widespread adoption as additional support to students as they try out computing courses in their high school pathways. Our aim is to increase the interest and career awareness of CS for high school girls so they may have an equitable footing to choose CS as a potential major or career. 
    more » « less
  4. By age 15 girls start to lose interest in STEM, and less than 50% consider a STEM-related career. Providing hands-on internship opportunities has been one of the leading ways to help connect students with exploring computing careers; however, these opportunities are limited in high school. We propose a framework for a university-led high school internship initiative that focuses on service learning, co-design, and the propagation of engaging computing curricula for younger audiences. We piloted this model virtually in summer 2021, with high school students and teachers as interns mentored by university role models. Teams led the development and implementation of computing-infused curricula for a virtual summer coding camp. In this article, we share our framework and review the importance of service-learning for recruiting diverse participants and the use of co-design as a way to broker relationships between developers and community stakeholders. Additionally, we provide preliminary outcomes of our internship model on student and teacher participants gathered from qualitative data including end-of-summer presentations and post-program interviews. 
    more » « less