The Kuroshio Extension (KE) has far-reaching influences on climate as well as on local marine ecosystems. Thus, skillful multi-year to decadal prediction of the KE state and understanding sources of skill are valuable. Retrospective forecasts using the high-resolution Community Earth System Model (CESM) show exceptional skill in predicting KE variability up to lead year 4, substantially higher than the skill found in a similarly configured low-resolution CESM. The higher skill is attained because the high-resolution system can more realistically simulate the westward Rossby wave propagation of initialized ocean anomalies in the central North Pacific and their expression within the sharp KE front, and does not suffer from spurious variability near Japan present in the low-resolution CESM that interferes with the incoming wave propagation. These results argue for the use of high-resolution models for future studies that aim to predict changes in western boundary current systems and associated biological fields.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract It has been widely recognized that tropical cyclone (TC) genesis requires favorable large‐scale environmental conditions. Based on these linkages, numerous efforts have been made to establish an empirical relationship between seasonal TC activities and large‐scale environmental favorability in a quantitative way, which lead to conceptual functions such as the TC genesis index. However, due to the limited amount of reliable TC observations and complexity of the climate system, a simple analytic function may not be an accurate portrait of the empirical relationship between TCs and their ambiences. In this research, we use convolution neural networks (CNNs) to disentangle this complex relationship. To circumvent the limited amount of seasonal TC observation records, we implement transfer‐learning technique to train ensemble of CNNs first on suites of high‐resolution climate model simulations with realistic seasonal TC activities and large‐scale environmental conditions, and then on a state‐of‐the‐art reanalysis from 1950 to 2019. The trained CNNs can well reproduce the historical TC records and yields significant seasonal prediction skills when the large‐scale environmental inputs are provided by operational climate forecasts. Furthermore, by inputting the ensemble CNNs with 20th century reanalysis products and Phase 6 of the Coupled Model Intercomparison Project (CMIP6) simulations, we investigated TC variability and its changes in the past and future climates. Specifically, our ensemble CNNs project a decreasing trend of global mean TC activity in the future warming scenario, which is consistent with our future projections using high‐resolution climate model.
-
Abstract The impact of increased model horizontal resolution on climate prediction performance is examined by comparing results from low-resolution (LR) and high-resolution (HR) decadal prediction simulations conducted with the Community Earth System Model (CESM). There is general improvement in global skill and signal-to-noise characteristics, with particularly noteworthy improvements in the eastern tropical Pacific, when resolution is increased from order 1° in all components to order 0.1°/0.25° in the ocean/atmosphere. A key advance in the ocean eddy-resolving HR system is the reduction of unrealistic warming in the Southern Ocean (SO) which we hypothesize has global ramifications through its impacts on tropical Pacific multidecadal variability. The results suggest that accurate representation of SO processes is critical for improving decadal climate predictions globally and for addressing longstanding issues with coupled climate model simulations of recent Earth system change.
-
Abstract Upwelling along ocean eastern boundaries is expected to intensify due to coastal wind strengthening driven by increasing land-sea contrast according to the Bakun hypothesis. Here, the latest high-resolution climate simulations that exhibit drastic improvements of upwelling processes reveal far more complex future upwelling changes. The Southern Hemisphere upwelling systems show a future strengthening in coastal winds with a rapid coastal warming, whereas the Northern Hemisphere coastal winds show a decrease with a comparable warming trend. The Bakun mechanism cannot explain these changes. Heat budget analysis indicates that temperature change in the upwelling region is not simply controlled by vertical Ekman upwelling, but also influenced by horizontal heat advection driven by strong near-coast wind stress curl that is neglected in the Bakun hypothesis and poorly represented by the low-resolution models in the Coupled Model Intercomparison Project. The high-resolution climate simulations also reveal a strong spatial variation in future upwelling changes, which is missing in the low-resolution simulations.
-
Abstract Ocean warming is a key factor impacting future changes in climate. Here we investigate vertical structure changes in globally averaged ocean heat content (OHC) in high‐ (HR) and low‐resolution (LR) future climate simulations with the Community Earth System Model (CESM). Compared with observation‐based estimates, the simulated OHC anomalies in the upper 700 and 2,000 m during 1960–2020 are more realistic in CESM‐HR than ‐LR. Under RCP8.5 scenario, the net surface heat into the ocean is very similar in CESM‐HR and ‐LR. However, CESM‐HR has a larger increase in OHC in the upper 250 m compared to CESM‐LR, but a smaller increase below 250 m. This difference can be traced to differences in eddy‐induced vertical heat transport between CESM‐HR and ‐LR in the historical period. Moreover, our results suggest that with the same heat input, upper‐ocean warming is likely to be underestimated by most non‐eddy‐resolving climate models.
-
Abstract Marine heatwaves (MHWs), episodic periods of abnormally high sea surface temperature, severely affect marine ecosystems. Large marine ecosystems (LMEs) cover ~22% of the global ocean but account for 95% of global fisheries catches. Yet how climate change affects MHWs over LMEs remains unknown because such LMEs are confined to the coast where low-resolution climate models are known to have biases. Here, using a high-resolution Earth system model and applying a ‘future threshold’ that considers MHWs as anomalous warming above the long-term mean warming of sea surface temperatures, we find that future intensity and annual days of MHWs over the majority of the LMEs remain higher than in the present-day climate. Better resolution of ocean mesoscale eddies enables simulation of more realistic MHWs than low-resolution models. These increases in MHWs under global warming pose a serious threat to LMEs, even if resident organisms could adapt fully to the long-term mean warming.more » « less
-
Abstract The eastern North Pacific (ENP) has the highest density of tropical cyclones (TCs) on earth, and yet the controls on TCs, from individual events to seasonal totals, remain poorly understood. One effect that has not been fully considered is the unique geography of the Central American mountains. Although observational studies suggest these mountains can readily fuel individual TCs through dynamical processes, here we show that these mountains indeed play the opposite role on the seasonal timescale, hindering seasonal ENP TC activity by up to 35%. We found that these mountains significantly interrupt the abundant moisture transport from the Caribbean Sea to the ENP, limiting deep convection over the open ocean area where TCs preferentially occur. This study advances our fundamental understanding of ENP TC genesis mechanisms across the weather-to-climate timescales, and also highlights the importance of topography representation in improving the ENP regional climate simulations, as well as TC seasonal predictions and future projections.
-
null (Ed.)Oceanic fronts associated with strong western boundary current extensions vent a vast amount of heat into the atmosphere, anchoring mid-latitude storm tracks and facilitating ocean carbon sequestration. However, it remains unclear how the surface heat reservoir is replenished by ocean processes to sustain the atmospheric heat uptake. Using high-resolution climate simulations, we find that the vertical heat transport by ocean mesoscale eddies acts as an important heat supplier to the surface ocean in frontal regions. This vertical eddy heat transport is not accounted for by the prevailing inviscid and adiabatic ocean dynamical theories such as baroclinic instability and frontogenesis but is tightly related to the atmospheric forcing. Strong surface cooling associated with intense winds in winter promotes turbulent mixing in the mixed layer, destructing the vertical shear of mesoscale eddies. The restoring of vertical shear induces an ageostrophic secondary circulation transporting heat from the subsurface to surface ocean.more » « less
-
Abstract Extending climate prediction from seasonal to decadal timescales requires realistic initialization of not only upper ocean heat content but also the Atlantic meridional overturning circulation (AMOC). However, it remains a major challenge to realistically initialize AMOC in a coupled system while also maintaining a balanced atmosphere‐ocean initial state. This study demonstrates the feasibility of generating fully coupled historical states with realistic AMOC variability. Employing a forced ocean—sea‐ice (FOSI) model simulation as the “truth,” we show reproducibility of key features of historical AMOC decadal variability in a fully coupled model by restoring sea‐surface salinity, in addition to sea‐surface temperature restoring widely used in seasonal prediction. The atmospheric state of the restored coupled model solution is much closer to that of the free coupled simulation than to the observations used in FOSI, pointing to potential advantages of using this approach for initializing decadal predictions with reduced ocean initialization shock.