skip to main content

Search for: All records

Creators/Authors contains: "Chen, Shu-Ching"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. From the start, the airline industry has remarkably connected countries all over the world through rapid long-distance transportation, helping people overcome geographic barriers. Consequently, this has ushered in substantial economic growth, both nationally and internationally. The airline industry produces vast amounts of data, capturing a diverse set of information about their operations, including data related to passengers, freight, flights, and much more. Analyzing air travel data can advance the understanding of airline market dynamics, allowing companies to provide customized, efficient, and safe transportation services. Due to big data challenges in such a complex environment, the benefits of drawing insights from the air travel data in the airline industry have not yet been fully explored. This article aims to survey various components and corresponding proposed data analysis methodologies that have been identified as essential to the inner workings of the airline industry. We introduce existing data sources commonly used in the papers surveyed and summarize their availability. Finally, we discuss several potential research directions to better harness airline data in the future. We anticipate this study to be used as a comprehensive reference for both members of the airline industry and academic scholars with an interest in airline research.
    Free, publicly-accessible full text available November 30, 2023
  2. Free, publicly-accessible full text available July 12, 2023
  3. Free, publicly-accessible full text available January 1, 2023
  4. Abstract—Periods of unique economic distress such as the COVID-19 pandemic can be quite difficult for small businesses. Challenges acquiring the supplies necessary to adhere to safety regulations created in the wake of such events can introduce stress on these businesses. This is further exacerbated when supply chains have slowed down, leading to global shortages from most large suppliers. This paper proposes a platform to aid such businesses in procuring COVID-19 related supplies such as Personal Protective Equipment (PPE) from one another, leveraging advanced data acquisition, integration, and Natural Language Processing (NLP) methods. With the pandemic end in sight, the platform described in this paper can be reused for other emergencies such as hurricanes, floods, among others. The proposed platform supports business transactions within a Buyer’s Club (BC), keyword-based sourcing of new businesses to join the platform, and matching products to relevant regulations using greater-than-word length encoding, helping businesses comply with the ever-changing regulatory landscape. Index Terms—COVID-19, Disaster, Natural Language Processing, Data Acquisition, Data Retrieval, User Interfaces
  5. Immersive Learning Environments (ILEs) developed in Virtual and Augmented Reality (VR/AR) are a novel pro- fessional training platform. An ILE can facilitate an Adaptive Learning System (ALS), which has proven beneficial to the learning process. However, there is no existing AI-ready ILE that facilitates collecting multimedia multimodal data from the environment and users for training AI models, nor allows for the learning contents and complex learning process to be dynamically adapted by an ALS. This paper proposes a novel multimedia system in VR/AR to dynamically build ILEs for a wide range of use-cases, based on a description language for the generalizable ILE structure. It will detail users’ paths and conditions for completing learning activities, and a content adaptation algorithm to update the ILE at runtime. Human and AI systems can customize the environment based on user learning metrics. Results show that this framework is efficient and low- overhead, suggesting a path to simplifying and democratizing the ILE development without introducing bloat. Index Terms—virtual reality, augmented reality, content generation, immersive learning, 3D environments
  6. Convolutional Neural Network (CNN) models and many accessible large-scale public visual datasets have brought lots of research work to a remarkable new stage. Benefited from well-trained CNN models, small training datasets can learn comprehensive features by utilizing the preliminary features from transfer learning. However, the performance is not guaranteed when taking these features to construct a new model, as the differences always exist between the source and target domains. In this paper, we propose to build an Evolution Programming-based framework to address various challenges. This framework automates both the feature learning and model building processes. It first identifies the most valuable features from pre-trained models and then constructs a suitable model to understand the characteristic features for different tasks. Each model differs in numerous ways. Overall, the experimental results effectively reach optimal solutions, demonstrating that a time-consuming task could also be conducted by an automated process that exceeds the human ability.
  7. Data collected from real-world environments often contain multiple objects, scenes, and activities. In comparison to single-label problems, where each data sample only defines one concept, multi-label problems allow the co-existence of multiple concepts. To exploit the rich semantic information in real-world data, multi-label classification has seen many applications in a variety of domains. The traditional approaches to multi-label problems tend to have the side effects of increased memory usage, slow model inference speed, and most importantly the under-utilization of the dependency across concepts. In this paper, we adopt multi-task learning to address these challenges. Multi-task learning treats the learning of each concept as a separate job, while at the same time leverages the shared representations among all tasks. We also propose a dynamic task balancing method to automatically adjust the task weight distribution by taking both sample-level and task-level learning complexities into consideration. Our framework is evaluated on a disaster video dataset and the performance is compared with several state-of-the-art multi-label and multi-task learning techniques. The results demonstrate the effectiveness and supremacy of our approach.
  8. Abstract: Deep Learning (DL) has made significant changes to a large number of research areas in recent decades. For example, several astonishing Convolutional Neural Network (CNN) models have been built by researchers to fulfill image classification needs using large-scale visual datasets successfully. Transfer Learning (TL) makes use of those pre-trained models to ease the feature learning process for other target domains that contain a smaller amount of training data. Currently, there are numerous ways to utilize features generated by transfer learning. Pre-trained CNN models prepare mid-/high-level features to work for different targeting problem domains. In this paper, a DL feature and model selection framework based on evolutionary programming is proposed to solve the challenges in visual data classification. It automates the process of discovering and obtaining the most representative features generated by the pre-trained DL models for different classification tasks.