skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Kai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The climate simulation frontier of a global storm-resolving model (GSRM; or k-scale model because of its kilometer-scale horizontal resolution) is deployed for climate change simulations. The climate sensitivity, effective radiative forcing, and relative humidity changes are assessed in multiyear atmospheric GSRM simulations with perturbed sea-surface temperatures and/or carbon dioxide concentrations. Our comparisons to conventional climate model results can build confidence in the existing climate models or highlight important areas for additional research. This GSRM’s climate sensitivity is within the range of conventional climate models, although on the lower end as the result of neutral, rather than amplifying, shortwave feedbacks. Its radiative forcing from carbon dioxide is higher than conventional climate models, and this arises from a bias in climatological clouds and an explicitly simulated high-cloud adjustment. Last, the pattern and magnitude of relative humidity changes, simulated with greater fidelity via explicitly resolving convection, are notably similar to conventional climate models. 
    more » « less
    Free, publicly-accessible full text available June 28, 2025
  2. Abstract Changes in tropical deep convection with global warming are a leading source of uncertainty for future climate projections. A comparison of the responses of active sensor measurements of cloud ice to interannual variability and next-generation global storm-resolving model (also known ask-scale models) simulations to global warming shows similar changes for events with the highest column-integrated ice. The changes reveal that the ice loading decreases outside the most active convection but increases at a rate of several percent per Kelvin surface warming in the most active convection. Disentangling thermodynamic and vertical velocity changes shows that the ice signal is strongly modulated by structural changes of the vertical wind field towards an intensification of strong convective updrafts with warming, suggesting that changes in ice loading are strongly influenced by changes in convective velocities, as well as a path toward extracting information about convective velocities from observations. 
    more » « less
  3. This work demonstrates a novel junction termination extension (JTE) with a graded charge profile for vertical GaN p-n diodes. The fabrication of this JTE obviates GaN etch and requires only a single-step implantation. A bi-layer photoresist is used to produce an ultra-small bevel angle (~0.1°) at the sidewall of a dielectric layer. This tapered dielectric layer is then used as the implantation mask to produce a graded charge profile in p-GaN. The fabricated GaN p-n diodes show a breakdown voltage ( BV ) of 1.7 kV (83% of the parallel-plane limit) with positive temperature coefficient, as well as a high avalanche current density over 1100 A/cm 2 at BV in the unclamped inductive switching test. This robust avalanche is ascribed to the migration of the major impact ionization location from the JTE edge to the main junction. This single-implant, efficient, avalanche-capable JTE can potentially become a building block of many vertical GaN devices, and its fabrication technique has wide device and material applicability. 
    more » « less
  4. Medium-voltage (MV) power electronic devices are widely used in renewable energy processing, electric grids, pulse power systems, etc. Current MV devices are mainly made of Si and SiC. This paper presents our recent efforts in developing a new generation of MV devices based on the multi-channel AlGaN/GaN platform and many new device designs involving charge balance, fin, and Cascode. The specific on-resistance of our 10 kV-class GaN Schottky barrier diodes and normally-OFF transistors is ~40 mΩ•cm 2 , rendering a Baliga’s figure of merit exceeding the 1-D unipolar SiC limits. We show the great promise of GaN in medium and high-voltage power applications. 
    more » « less
  5. We report the first experimental demonstration of a vertical superjunction device in GaN. P-type nickel oxide (NiO) is sputtered conformally in 6μm deep n-GaN trenches. Sputter recipe is tuned to enable 1017 cm −3 level acceptor concentration in NiO, easing its charge balance with the 9×1016 cm −3 doped n-GaN. Vertical GaN superjunction p-n diodes (SJ-PNDs) are fabricated on both native GaN and low-cost sapphire substrates. GaN SJ-PNDs on GaN and sapphire both show a breakdown voltage (BV) of 1100 V, being at least 900 V higher than their 1-D PND counterparts. The differential specific on-resistance (RON,SP) of the two SJ-PNDs are both 0.3mΩ⋅ cm 2 , with the drift region resistance (RDR,SP) extracted to be 0.15mΩ⋅ cm 2 . The RON,SP∼BV trade-off is among the best in GaN-on-GaN diodes and sets a new record for vertical GaN devices on foreign substrates. The RDR,SP∼BV trade-off exceeds the 1-D GaN limit, fulfilling the superjunction functionality in GaN. 
    more » « less
  6. null (Ed.)