skip to main content

Search for: All records

Creators/Authors contains: "Chidambaram, Subramanian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Current hand wearables have limited customizability, they are loose-fit to an individual's hand and lack comfort. The main barrier in customizing hand wearables is the geometric complexity and size variation in hands. Moreover, there are different functions that the users can be looking for; some may only want to detect hand's motion or orientation; others may be interested in tracking their vital signs. Current wearables usually fit multiple functions and are designed for a universal user with none or limited customization. There are no specialized tools that facilitate the creation of customized hand wearables for varying hand sizes and providemore »different functionalities. We envision an emerging generation of customizable hand wearables that supports hand differences and promotes hand exploration with additional functionality. We introduce FabHandWear, a novel system that allows end-to-end design and fabrication of customized functional self-contained hand wearables. FabHandWear is designed to work with off-the-shelf electronics, with the ability to connect them automatically and generate a printable pattern for fabrication. We validate our system by using illustrative applications, a durability test, and an empirical user evaluation. Overall, FabHandWear offers the freedom to create customized, functional, and manufacturable hand wearables.« less
  2. In this modern world, with the increase of complexity of many technologies, especially in the micro and nanoscale, the field of robotic manipulation has tremendously grown. Microrobots and other complex microscale systems are often to laborious to fabricate using standard microfabrication techniques, therefore there is a trend towards fabricating them in parts then assembling them together, mainly using micromanipulation tools. Here, a comprehensive and robust micromanipulation platform is presented, in which four micromanipulators can be used simultaneously to perform complex tasks, providing the user with an intuitive environment. The system utilizes a vision-based force sensor to aid with manipulation tasksmore »and it provides a safe environment for biomanipulation. Lastly, virtual reality (VR) was incorporated into the system, allowing the user to control the probes from a more intuitive standpoint and providing an immersive platform for the future of micromanipulation.« less
  3. Augmented reality (AR) is an efficient form of delivering spatial information and has great potential for training workers. However, AR is still not widely used for such scenarios due to the technical skills and expertise required to create interactive AR content. We developed ProcessAR, an AR-based system to develop 2D/3D content that captures subject matter expert’s (SMEs) environment-object interactions in situ. The design space for ProcessAR was identified from formative interviews with AR programming experts and SMEs, alongside a comparative design study with SMEs and novice users. To enable smooth workflows, ProcessAR locates and identifies different tools/objects through computer visionmore »within the workspace when the author looks at them. We explored additional features such as embedding 2D videos with detected objects and user-adaptive triggers. A final user evaluation comparing ProcessAR and a baseline AR authoring environment showed that, according to our qualitative questionnaire, users preferred ProcessAR.« less
  4. There is an increasing trend of Virtual-Reality (VR) applications found in education, entertainment, and industry. Many of them utilize real world tools, environments, and interactions as bases for creation. However, creating such applications is tedious, fragmented, and involves expertise in authoring VR using programming and 3D-modelling softwares. This hinders VR adoption by decoupling subject matter experts from the actual process of authoring while increasing cost and time. We present VRFromX, an in-situ Do-It-Yourself (DIY) platform for content creation in VR that allows users to create interactive virtual experiences. Using our system, users can select region(s) of interest (ROI) in scannedmore »point cloud or sketch in mid-air using a brush tool to retrieve virtual models and then attach behavioral properties to them. We ran an exploratory study to evaluate usability of VRFromX and the results demonstrate feasibility of the framework as an authoring tool. Finally, we implemented three possible use-cases to showcase potential applications.« less
  5. Current Computer-Aided Design (CAD) tools lack proper support for guiding novice users towards designs ready for fabrication. We propose Shape Structuralizer (SS), an interactive design support system that repurposes surface models into structural constructions using rods and custom 3Dprinted joints. Shape Structuralizer embeds a recommendation system that computationally supports the user during design ideation by providing design suggestions on local refinements of the design. This strategy enables novice users to choose designs that both satisfy stress constraints as well as their personal design intent. The interactive guidance enables users to repurpose existing surface mesh models, analyze them in-situ for stressmore »and displacement constraints, add movable joints to increase functionality, and attach a customized appearance. This also empowers novices to fabricate even complex constructs while ensuring structural soundness. We validate the Shape Structuralizer tool with a qualitative user study where we observed that even novice users were able to generate a large number of structurally safe designs for fabrication.« less
  6. We present iSoft, a single volume soft sensor capable of sensing real-time continuous contact and unidirectional stretching. We propose a low-cost and an easy way to fabricate such piezoresistive elastomer-based soft sensors for instant interactions. We employ an electrical impedance tomography (EIT) technique to estimate changes of resistance distribution on the sensor caused by fingertip contact. To compensate for the rebound elasticity of the elastomer and achieve real-time continuous contact sensing, we apply a dynamic baseline update for EIT. The baseline updates are triggered by fingertip contact and movement detections. Further, we support unidirectional stretching sensing using a model-based approachmore »which works separately with continuous contact sensing. We also provide a software toolkit for users to design and deploy personalized interfaces with customized sensors. Through a series of experiments and evaluations, we validate the performance of contact and stretching sensing. Through example applications, we show the variety of examples enabled by iSoft.« less