skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dani, Varsha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We address the problem of designing a distributed algorithm for two robots that sketches the boundary of an unknown shape. Critically, we assume a certain amount of delay in how quickly our robots can react to external feedback. In particular, when a robot moves, it commits to move along path of length at least 𝜆, or turn an amount of radians at least 𝜆 for some positive 𝜆 ≤ 1∕26, that is normalized based on a unit diameter shape. Then, our algorithm outputs a polygon that is √ an 𝜖-sketch, for 𝜖 =8 𝜆, in the sense that every point on the shape boundary is within distance 𝜖 of the output polygon. Moreover, our costs are asymptotically optimal in two key criteria for the robots: total distance traveled and total amount of rotation. Additionally, we implement our algorithm, and illustrate its output on some specific shapes. 
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  2. Guruswami, Venkatesan (Ed.)
    Traditional fraud detection is often based on finding statistical anomalies in data sets and transaction histories. A sophisticated fraudster, aware of the exact kinds of tests being deployed, might be difficult or impossible to catch. We are interested in paradigms for fraud detection that are provably robust against any adversary, no matter how sophisticated. In other words, the detection strategy should rely on signals in the data that are inherent in the goals the adversary is trying to achieve. Specifically, we consider a fraud detection game centered on a random walk on a graph. We assume this random walk is implemented by having a player at each vertex, who can be honest or not. In particular, when the random walk reaches a vertex owned by an honest player, it proceeds to a uniformly random neighbor at the next timestep. However, when the random walk reaches a dishonest player, it instead proceeds to an arbitrary neighbor chosen by an omniscient Adversary. The game is played between the Adversary and a Referee who sees the trajectory of the random walk. At any point during the random walk, if the Referee determines that a {specific} vertex is controlled by a dishonest player, the Referee accuses that player, and therefore wins the game. The Referee is allowed to make the occasional incorrect accusation, but must follow a policy that makes such mistakes with small probability of error. The goal of the adversary is to make the cover time large, ideally infinite, i.e., the walk should never reach at least one vertex. We consider the following basic question: how much can the omniscient Adversary delay the cover time without getting caught? Our main result is a tight upper bound on this delay factor. We also discuss possible applications of our results to settings such as Rotor Walks, Leader Election, and Sybil Defense. 
    more » « less
  3. Rajsbaum, Sergio; Balliu, Alkida; Daymude, Joshua J.; Olivetti, Dennis (Ed.)
    We address the problem of designing a distributed algorithm for two robots that sketches the boundary of an unknown shape. Critically, we assume a certain amount of delay in how quickly our robots can react to external feedback. In particular, when a robot moves, it commits to move along path of length at least λ, or turn an amount of radians at least λ for some positive λ ≤ (1/2)^6, that is normalized based on a unit diameter shape. Then, our algorithm outputs a polygon that is an ϵ-sketch, for ϵ = 8λ^(1/2), in the sense that every point on the shape boundary is within distance ϵ of the output polygon. Moreover, our costs are asymptotically optimal in two key criteria for the robots: total distance travelled and total amount of rotation. Additionally, we implement our algorithm, and illustrate its output on some specific shapes. 
    more » « less
  4. Bojanczyk, M. et (Ed.)
    Embedding graphs in a geographical or latent space, i.e. inferring locations for vertices in Euclidean space or on a smooth manifold or submanifold, is a common task in network analysis, statistical inference, and graph visualization. We consider the classic model of random geometric graphs where n points are scattered uniformly in a square of area n, and two points have an edge between them if and only if their Euclidean distance is less than r. The reconstruction problem then consists of inferring the vertex positions, up to the symmetries of the square, given only the adjacency matrix of the resulting graph. We give an algorithm that, if r = n^α for α > 0, with high probability reconstructs the vertex positions with a maximum error of O(n^β) where β = 1/2-(4/3)α, until α ≥ 3/8 where β = 0 and the error becomes O(√{log n}). This improves over earlier results, which were unable to reconstruct with error less than r. Our method estimates Euclidean distances using a hybrid of graph distances and short-range estimates based on the number of common neighbors. We extend our results to the surface of the sphere in ℝ³ and to hypercubes in any constant dimension. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)