Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Sun moves with respect to the local interstellar medium (LISM) and modifies its properties to heliocentric distances as large as 1 pc. The solar wind (SW) is affected by penetration of the LISM neutral particles, especially H and He atoms. Charge exchange between the LISM atoms and SW ions creates pickup ions (PUIs) and secondary neutral atoms that can propagate deep into the LISM. Neutral atoms measured at 1 au can provide us with valuable information on the properties of pristine LISM. New Horizons provides us with unique measurements of pickup ions in the SW region where they are thermodynamically dominant. Voyager 1 and 2 spacecraft perform in-situ measurements of the LISM perturbed by the presence of the heliosphere and relate them to the unperturbed region. The Interstellar Boundary Explorer (IBEX) makes it possible identify the 3-D structure of the heliospheric interface. We outline the main challenges in the physics of the SW–LISM interaction. The physical processes that require a focused attention of the heliospheric community are discussed from the theoretical perspective and space missions necessary for their investigation. We emphasize the importance of data-driven simulations, which are necessary for the interpretation and explanation of spacecraft data.more » « less
-
Turbulence is ubiquitous in space plasmas. It is one of the most important subjects in heliospheric physics, as it plays a fundamental role in the solar wind—local interstellar medium interaction and in controlling energetic particle transport and acceleration processes. Understanding the properties of turbulence in various regions of the heliosphere with vastly different conditions can lead to answers to many unsolved questions opened up by observations of the magnetic field, plasma, pickup ions, energetic particles, radio and UV emissions, and so on. Several space missions have helped us gain preliminary knowledge on turbulence in the outer heliosphere and the very local interstellar medium. Among the past few missions, the Voyagers have paved the way for such investigations. This paper summarizes the open challenges and voices our support for the development of future missions dedicated to the study of turbulence throughout the heliosphere and beyond.more » « less
-
Abstract The solar wind (SW) and local interstellar medium (LISM) are turbulent media. Their interaction is governed by complex physical processes and creates heliospheric regions with significantly different properties in terms of particle populations, bulk flow and turbulence. Our knowledge of the solar wind turbulence nature and dynamics mostly relies on near-Earth and near-Sun observations, and has been increasingly improving in recent years due to the availability of a wealth of space missions, including multi-spacecraft missions. In contrast, the properties of turbulence in the outer heliosphere are still not completely understood. In situ observations by Voyager and New Horizons , and remote neutral atom measurements by IBEX strongly suggest that turbulence is one of the critical processes acting at the heliospheric interface. It is intimately connected to charge exchange processes responsible for the production of suprathermal ions and energetic neutral atoms. This paper reviews the observational evidence of turbulence in the distant SW and in the LISM, advances in modeling efforts, and open challenges.more » « less
-
Abstract A number of physical processes accompanying the solar wind interaction with the local interstellar medium (LISM) are governed by charge exchange between ions and neutral atoms of interstellar origin. A new, 3D, MHD-plasma/kinetic-neutral model is developed that self-consistently includes both neutral hydrogen and helium atoms, and their feedback on the plasma, through charge exchange and photoionization. Focusing on the transport of interstellar neutral helium, quantitative estimates are provided for bulk properties, deflection angles, and velocity distribution functions (VDFs) along the upwind direction. It is shown that the average deflection of secondary He atoms born in the outer heliosheath (OHS) from their original direction in the LISM is ∼12° in front of the heliopause, and occurs in the directions parallel to the plane formed by the velocity and magnetic field vectors in the unperturbed LISM. While these properties are consistent with Interstellar Boundary Explorer observations of the “warm breeze,” we show that charge exchange in the OHS leads to remarkable deviations of their VDF from the Maxwellian distribution. He atom filtration in the OHS results in a significant temperature anisotropy and VDF asymmetries, even for the primary helium atoms that experience no charge exchange at all. This is an entirely kinetic phenomenon that shows that primary He atoms observed at 1 au have distributions substantially different from those in the LISM.
-
Abstract This review summarizes the current state of research aiming at a description of the global heliosphere using both analytical and numerical modeling efforts, particularly in view of the overall plasma/neutral flow and magnetic field structure, and its relation to energetic neutral atoms. Being part of a larger volume on current heliospheric research, it also lays out a number of key concepts and describes several classic, though still relevant early works on the topic. Regarding numerical simulations, emphasis is put on magnetohydrodynamic (MHD), multi-fluid, kinetic-MHD, and hybrid modeling frameworks. Finally, open issues relating to the physical relevance of so-called “croissant” models of the heliosphere, as well as the general (dis)agreement of model predictions with observations are highlighted and critically discussed.