Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents GeoDMA , which processes the GPS data from multiple vehicles to detect anomalous driving maneuvers, such as rapid acceleration, sudden braking, and rapid swerving. First, an unsupervised deep auto-encoder is designed to learn a set of unique features from the normal historical GPS data of all drivers. We consider the temporal dependency of the driving data for individual drivers and the spatial correlation among different drivers. Second, to incorporate the peer dependency of drivers in local regions, we develop a geographical partitioning algorithm to partition a city into several sub-regions to do the driving anomaly detection. Specifically, we extend the vehicle-vehicle dependency to road-road dependency and formulate the geographical partitioning problem into an optimization problem. The objective of the optimization problem is to maximize the dependency of roads within each sub-region and minimize the dependency of roads between any two different sub-regions. Finally, we train a specific driving anomaly detection model for each sub-region and perform in-situ updating of these models by incremental training. We implement GeoDMA in Pytorch and evaluate its performance using a large real-world GPS trajectories. The experiment results demonstrate that GeoDMA achieves up to 8.5% higher detection accuracy than the baseline methods.more » « less
-
Aidong Zhang; Huzefa Rangwala (Ed.)In many scenarios, 1) data streams are generated in real time; 2) labeled data are expensive and only limited labels are available in the beginning; 3) real-world data is not always i.i.d. and data drift over time gradually; 4) the storage of historical streams is limited. This learning setting limits the applicability and availability of many Machine Learning (ML) algorithms. We generalize the learning task under such setting as a semi-supervised drifted stream learning with short lookback problem (SDSL). SDSL imposes two under-addressed challenges on existing methods in semi-supervised learning and continuous learning: 1) robust pseudo-labeling under gradual shifts and 2) anti-forgetting adaptation with short lookback. To tackle these challenges, we propose a principled and generic generation-replay framework to solve SDSL. To achieve robust pseudo-labeling, we develop a novel pseudo-label classification model to leverage supervised knowledge of previously labeled data, unsupervised knowledge of new data, and, structure knowledge of invariant label semantics. To achieve adaptive anti-forgetting model replay, we propose to view the anti-forgetting adaptation task as a flat region search problem. We propose a novel minimax game-based replay objective function to solve the flat region search problem and develop an effective optimization solver. Experimental results demonstrate the effectiveness of the proposed method.more » « less