skip to main content

Search for: All records

Creators/Authors contains: "Fu, Yonggan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transfer learning leverages feature representations of deep neural networks (DNNs) pretrained on source tasks with rich data to empower effective finetuning on downstream tasks. However, the pre-trained models are often prohibitively large for delivering generalizable representations, which limits their deployment on edge devices with constrained resources. To close this gap, we propose a new transfer learning pipeline, which leverages our finding that robust tickets can transfer better, i.e., subnetworks drawn with properly induced adversarial robustness can win better transferability over vanilla lottery ticket subnetworks. Extensive experiments and ablation studies validate that our proposed transfer learning pipeline can achieve enhanced accuracy-sparsity trade-offs across both diverse downstream tasks and sparsity patterns, further enriching the lottery ticket hypothesis. 
    more » « less
    Free, publicly-accessible full text available July 9, 2024
  2. Free, publicly-accessible full text available June 1, 2024
  3. Free, publicly-accessible full text available June 17, 2024
  4. Semantic segmentation for scene understanding is nowadays widely demanded, raising significant challenges for the algorithm efficiency, especially its applications on resource-limited platforms. Current segmentation models are trained and evaluated on massive high-resolution scene images (“data-level”) and suffer from the expensive computation arising from the required multi-scale aggregation (“network level”). In both folds, the computational and energy costs in training and inference are notable due to the often desired large input resolutions and heavy computational burden of segmentation models. To this end, we propose DANCE, general automated DA ta- N etwork C o-optimization for E fficient segmentation model training and inference . Distinct from existing efficient segmentation approaches that focus merely on light-weight network design, DANCE distinguishes itself as an automated simultaneous data-network co-optimization via both input data manipulation and network architecture slimming. Specifically, DANCE integrates automated data slimming which adaptively downsamples/drops input images and controls their corresponding contribution to the training loss guided by the images’ spatial complexity. Such a downsampling operation, in addition to slimming down the cost associated with the input size directly, also shrinks the dynamic range of input object and context scales, therefore motivating us to also adaptively slim the network to match the downsampled data. Extensive experiments and ablating studies (on four SOTA segmentation models with three popular segmentation datasets under two training settings) demonstrate that DANCE can achieve “all-win” towards efficient segmentation (reduced training cost, less expensive inference, and better mean Intersection-over-Union (mIoU)). Specifically, DANCE can reduce ↓25%–↓77% energy consumption in training, ↓31%–↓56% in inference, while boosting the mIoU by ↓0.71%–↑ 13.34%. 
    more » « less
  5. Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art deep learning model for representation learning on graphs. However, it remains notoriously challenging to train and inference GCNs over large graph datasets, limiting their application to large real-world graphs and hindering the exploration of deeper and more sophisticated GCN graphs. This is because as the graph size grows, the sheer number of node features and the large adjacency matrix can easily explode the required memory and data movements. To tackle the aforementioned challenges, we explore the possibility of drawing lottery tickets when sparsifying GCN graphs, i.e., subgraphs that largely shrink the adjacency matrix yet are capable of achieving accuracy comparable to or even better than their full graphs. Specifically, we for the first time discover the existence of graph early-bird (GEB) tickets that emerge at the very early stage when sparsifying GCN graphs, and propose a simple yet effective detector to automatically identify the emergence of such GEB tickets. Furthermore, we advocate graph-model co-optimization and develop a generic efficient GCN early-bird training framework dubbed GEBT that can significantly boost the efficiency of GCN training by (1) drawing joint early-bird tickets between the GCN graphs and models and (2) enabling simultaneously sparsification of both the GCN graphs and models. Experiments on various GCN models and datasets consistently validate our GEB finding and the effectiveness of our GEBT, e.g., our GEBT achieves up to 80.2% ~ 85.6% and 84.6% ~ 87.5% savings of GCN training and inference costs while offering a comparable or even better accuracy as compared to state-of-the-art methods. Our source code and supplementary appendix are available at 
    more » « less
  6. Contrastive learning learns visual representations by enforcing feature consistency under different augmented views. In this work, we explore contrastive learning from a new perspective. Interestingly, we find that quantization, when properly engineered, can enhance the effectiveness of contrastive learning. To this end, we propose a novel contrastive learning framework, dubbed Contrastive Quant, to encourage feature consistency under both differently augmented inputs via various data transformations and differently augmented weights/activations via various quantization levels. Extensive experiments, built on top of two state-of-the-art contrastive learning methods SimCLR and BYOL, show that Contrastive Quant consistently improves the learned visual representation. 
    more » « less
  7. Vision transformers (ViTs) have recently set off a new wave in neural architecture design thanks to their record-breaking performance in various vision tasks. In parallel, to fulfill the goal of deploying ViTs into real-world vision applications, their robustness against potential malicious attacks has gained increasing attention. In particular, recent works show that ViTs are more robust against adversarial attacks as compared with convolutional neural networks (CNNs), and conjecture that this is because ViTs focus more on capturing global interactions among different input/feature patches, leading to their improved robustness to local perturbations imposed by adversarial attacks. In this work, we ask an intriguing question: “Under what kinds of perturbations do ViTs become more vulnerable learners compared to CNNs?” Driven by this question, we first conduct a comprehensive experiment regarding the robustness of both ViTs and CNNs under various existing adversarial attacks to understand the underlying reason favoring their robustness. Based on the drawn insights, we then propose a dedicated attack framework, dubbed Patch-Fool, that fools the self-attention mechanism by attacking its basic component (i.e., a single patch) with a series of attention-aware optimization techniques. Interestingly, our Patch-Fool framework shows for the first time that ViTs are not necessarily more robust than CNNs against adversarial perturbations. In particular, we find that ViTs are more vulnerable learners compared with CNNs against our Patch-Fool attack which is consistent across extensive experiments, and the observations from Sparse/Mild Patch-Fool, two variants of Patch-Fool, indicate an intriguing insight that the perturbation density and strength on each patch seem to be the key factors that influence the robustness ranking between ViTs and CNNs. It can be expected that our Patch-Fool framework will shed light on both future architecture designs and training schemes for robustifying ViTs towards their real-world deployment. Our codes are available at 
    more » « less