We report a two-step etching process involving inductively coupled plasma (ICP) etching followed by wet chemical etching to achieve smooth and vertical sidewalls, being beneficial for AlGaN-based electronic and optoelectronic devices. The influence of ICP power on the roughness of etched sidewalls is investigated. It is observed that ICP etching alone does not produce smooth sidewalls, necessitating subsequent wet chemical etching using tetramethyl ammonium hydroxide (TMAH) to enhance sidewall smoothness and reduce tilt angle. The morphological evolution of the etched sidewalls with wet etch time for the device structures is also thoroughly investigated. Consistent etch results are achieved for AlxGa1-xN alloys with Al compositions up to 70%, indicating the effectiveness of our etching process.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Free, publicly-accessible full text available March 8, 2025
-
In this paper, we report the molecular beam epitaxy-grown InGaN-quantum disks embedded within selective area epitaxy of GaN nanowires with both Ga- and N-polarities. A detailed comparative analysis of these two types of nanostructures is also provided. Compared to Ga-polar nanowires, N-polar nanowires are found to exhibit a higher vertical growth rate, flatter top, and reduced lateral overgrowth. InGaN quantum disk-related optical emission is observed from nanowires with both polarities; however, the N-polar structures inherently emit at longer wavelengths due to higher indium incorporation. Considering that N-polar nanowires offer more compelling geometry control compared to Ga-polar ones, we focus on the theoretical analysis of only N-polar structures to realize high-performance quantum emitters. A single nanowire-level analysis was performed, and the effects of nanowire diameter, taper length, and angle on guided modes, light extraction, and far-field emission were investigated. These findings highlight the importance of tailoring nanowire geometry and eventually optimizing the growth processes of III-nitride nanostructures.more » « lessFree, publicly-accessible full text available February 1, 2025
-
The adaptive bitrate selection (ABR) mechanism, which decides the bitrate for each video chunk is an important part of video streaming. There has been significant interest in developing Reinforcement-Learning (RL) based ABR algorithms because of their ability to learn efficient bitrate actions based on past data and their demonstrated improvements over wired, 3G and 4G networks. However, the Quality of Experience (QoE), especially video stall time, of state-of-the-art ABR algorithms including the RL-based approaches falls short of expectations over commercial mmWave 5G networks, due to widely and wildly fluctuating throughput. These algorithms find optimal policies for a multi-objective unconstrained problem where the policies inherently depend on the predefined weight parameters of the multiple objectives (e.g., bitrate maximization, stall-time minimization). Our empirical evaluation suggests that such a policy cannot adequately adapt to the high variations of 5G throughput, resulting in long stall times. To address these issues, we formulate the ABR selection problem as a constrained Markov Decision Process where the objective is to maximize the QoE subject to a stall-time constraint. The strength of this formulation is that it helps mitigate the stall time while maintaining high bitrates. We propose COREL, a primal-dual actor-critic RL algorithm, which incorporates an additional critic network to estimate stall time compared to existing RL-based approaches and can tune the optimal dual variable or weight to guide the policy towards minimizing stall time. Our experiment results across various commercial mmWave 5G traces reveal that COREL reduces the average stall time by a factor of 4 and the 95th percentile by a factor of 2.more » « less
-
Abstract This paper presents the design, material growth and fabrication of AlGaN laser structures grown by plasma-assisted molecular beam epitaxy. Considering hole transport to be the major challenge, our ultraviolet-A diode laser structures have a compositionally graded transparent tunnel junction, resulting in superior hole injection and a low contact resistance. By optimizing active region thickness, a five-fold improvement in photoluminescence intensity is obtained compared to that of our own non-optimized test structures. The electrical and optical characteristics of processed devices demonstrate only spontaneous emission with a peak wavelength at 354 nm. The devices operate up to a continuous-wave current density of 11.1 kA cm−2at room temperature, which is the highest reported for laser structures grown on AlGaN templates. Additionally, they exhibit a record-low voltage drop of 8.5 V to achieve this current density.
-
Ultra-violet light emitting diodes (UV-LEDs) and lasers based on the III-Nitride material system are very promising since they enable compact, safe, and efficient solid-state sources of UV light for a range of applications. The primary challenges for UV LEDs are related to the poor conductivity of p-AlGaN layers and the low light extraction efficiency of LED structures. Tunnel junction-based UV LEDs provide a distinct and unique pathway to eliminate several challenges associated with UV LEDs1-4. In this work, we present for the first time, a reversed-polarization (p-down) AlGaN based UV-LED utilizing bottom tunnel junction (BTJ) design. We show that compositional grading enables us to achieve the lowest reported voltage drop of 1.1 V at 20 A/cm2 among transparent AlGaN based tunnel junctions at this Al-composition. Compared to conventional LED design, a p-down structure offers lower voltage drop because the depletion barrier for both holes and electrons is lower due to polarization fields aligning with the depletion field. Furthermore, the bottom tunnel junction also allows us to use polarization grading to realize better p- and n-type doping to improve tunneling transport. The epitaxial structure of the UV-LED was grown by plasma-assisted molecular beam epitaxy (PAMBE) on metal-organic chemical vapor deposition (MOCVD)-grown n-type Al0.3Ga0.7N templates. The transparent TJ was grown using graded n++-Al0.3Ga0.7N→ n++-Al0.4Ga0.6N (Si=3×1020 cm-3) and graded p++-Al0.4Ga0.6N →p++-Al0.3Ga0.7N (Mg=1×1020 cm-3) to take advantage of induced 3D polarization charges. The high number of charges at the tunnel junction region leads to lower depletion width and efficient hole injection to the p-type layer. The UV LED active region consists of three 2.5 nm Al0.2Ga0.8N quantum wells and 7 nm Al0.3Ga0.6N quantum barriers followed by 12 nm of p- Al0.46Ga0.64N electron blocking layer (EBL). The active region was grown on top of the tunnel junction. A similar LED with p-up configuration was also grown to compare the electrical performance. The surface morphology examined by atomic force microscopy (AFM) shows smooth growth features with a surface roughness of 1.9 nm. The dendritic features on the surface are characteristic of high Si doping on the surface. The composition of each layer was extracted from the scan by high resolution x-ray diffraction (HR-XRD). The electrical characteristics of a device show a voltage drop of 4.9 V at 20 A/cm2, which corresponds to a tunnel junction voltage drop of ~ 1.1 V. This is the best lowest voltage for transparent 30% AlGaN tunnel junctions to-date and is comparable with the lowest voltage drop reported previously on non-transparent (InGaN-based) tunnel junctions at similar Al mole fraction AlGaN. On-wafer electroluminescence measurements on patterned light-emitting diodes showed single peak emission wavelength of 325 nm at 100 A/cm2 which corresponds to Al0.2Ga0.8N, confirming that efficient hole injection was achieved within the structure. The device exhibits a wavelength shift from 330 nm to 325 nm with increasing current densities from 10A/cm2 to 100A/cm2. In summary, we have demonstrated a fully transparent bottom AlGaN homojunction tunnel junction that enables p-down reversed polarization ultraviolet light emitting diodes, and has very low voltage drop at the tunnel junction. This work could enable new flexibility in the design of future III-Nitride ultraviolet LEDs and lasers.more » « less
-
Abstract In this work, we demonstrate two-junction UV LEDs enabled by transparent tunnel junctions. Low voltage-drop tunnel junctions were realized in Al0.3Ga0.7N layers through a combination of high doping and compositional grading. Capacitance and current–voltage measurements confirmed the operation of two junctions in series. The voltage drop of the two-junction LED was 2.1 times that of an equivalent single-junction LED, and the two-junction LED had higher external quantum efficiency (147%) than the single junction.
-
Strassburg, Martin ; Kim, Jong Kyu ; Krames, Michael R. (Ed.)AlGaN-based ultra-violet light emitting diodes (UV LEDs) are promising for a range of applications, including water purification, air disinfection and medical sensing. However, widespread adoption of UV LEDs is limited by the poor device efficiency. This has been attributed to the strong internal light absorption and poor electrical injection efficiency for the conventional UV LED structures, which typically use an absorbing p-GaN layer for p-type contact. Recent development of ultra-wide banggap AlGaN tunnel junctions enabled a novel UV LED design with the absence of the absorbing p-GaN contact layer. In this presentation, we will discuss recent progress of the AlGaN tunnel junctions and the development of tunnel junction-based UV LEDs, and discuss the challenges and future perspectives for the realization of high power, high efficiency UV LEDs.more » « less
-
Ultra-violet (UV) light emitting diodes operating at 339 nm using transparent interband tunnel junctions are reported. Tunneling-based ultraviolet light emitting diodes were grown by plasma-assisted molecular beam epitaxy on 30% Al-content AlGaN layers. A low tunnel junction voltage drop is obtained through the use of compositionally graded n and p-type layers in the tunnel junction, which enhance hole density and tunneling rates. The transparent tunnel junction-based UV LED reported here show a low voltage drop of 5.55 V at 20 A/cm2 and an on-wafer external quantum efficiency of 1.02% at 80 A/cm2.more » « less