Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 31, 2025
-
Free, publicly-accessible full text available August 31, 2025
-
Free, publicly-accessible full text available June 17, 2025
-
Abstract The Institute for Foundations of Machine Learning (IFML) focuses on core foundational tools to power the next generation of machine learning models. Its research underpins the algorithms and data sets that make generative artificial intelligence (AI) more accurate and reliable. Headquartered at The University of Texas at Austin, IFML researchers collaborate across an ecosystem that spans University of Washington, Stanford, UCLA, Microsoft Research, the Santa Fe Institute, and Wichita State University. Over the past year, we have witnessed incredible breakthroughs in AI on topics that are at the heart of IFML's agenda, such as foundation models, LLMs, fine‐tuning, and diffusion with game‐changing applications influencing almost every area of science and technology. In this article, we seek to highlight seek to highlight the application of foundational machine learning research on key use‐inspired topics:Fairness in Imaging with Deep Learning: designing the correct metrics and algorithms to make deep networks less biased.Deep proteins: using foundational machine learning techniques to advance protein engineering and launch a biomanufacturing revolution.Sounds and Space for Audio‐Visual Learning: building agents capable of audio‐visual navigation in complex 3D environments via new data augmentations.Improving Speed and Robustness of Magnetic Resonance Imaging: using deep learning algorithms to develop fast and robust MRI methods for clinical diagnostic imaging.IFML is also responding to explosive industry demand for an AI‐capable workforce. We have launched an accessible, affordable, and scalable new degree program—the MSAI—that looks to wholly reshape the AI/ML workforce pipeline.more » « less
-
In reinforcement learning for visual navigation, it is common to develop a model for each new task, and train that model from scratch with task-specific interactions in 3D environments. However, this process is expensive; massive amounts of interactions are needed for the model to generalize well. Moreover, this process is repeated when-ever there is a change in the task type or the goal modality. We present a unified approach to visual navigation using a novel modular transfer learning model. Our model can effectively leverage its experience from one source task and apply it to multiple target tasks (e.g., ObjectNav, Room-Nav, Vi ewNav) with various goal modalities (e.g., image, sketch, audio, label). Furthermore, our model enables zero-shot experience learning, whereby it can solve the target tasks without receiving any task-specific interactive training. Our experiments on multiple photorealistic datasets and challenging tasks show that our approach learns faster, generalizes better, and outperforms SoTA models by a significant margin.more » « less