skip to main content

Search for: All records

Creators/Authors contains: "Grover, Shuchi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 3, 2023
  2. The Computer Science Frontiers (CSF) project introduces teachers to the topics of artificial intelligence and distributed computing to engage their female students in computing by connecting lessons to relevant cutting edge technologies. Application topics include social media and news articles, as well as climate change, the arts (movies, music, and museum collections), and public health/medicine. CSF educators are prepared in a pedagogy and peer-teaching centered professional development program where they simultaneously learn and teach distributed computing, artificial intelligence, and internet of things lessons to each other. These professional developments allow educators to hone in on their teaching skills of these new topics and gain confidence in their ability to teach new computer science materials before running several activities with their students in the academic year classroom. In this workshop, teachers participating in the CS Frontiers professional development will give testimonials discussing their experiences teaching these topics in a two week summer camp. Attendees will then try out three computing activities, one from each Computer Science Frontiers module. Finally, there will be a question and answer session.
    Free, publicly-accessible full text available March 3, 2023
  3. Free, publicly-accessible full text available October 10, 2022
  4. Unlike summative assessment that is aimed at grading students at the end of a unit or academic term, formative assessment is assess- ment for learning, aimed at monitoring ongoing student learning to provide feedback to both student and teacher, so that learning gaps can be addressed during the learning process. Education research points to formative assessment as a crucial vehicle for improving student learning. Formative assessment in K-12 CS and program- ming classrooms remains a crucial unaddressed need. Given that assessment for learning is closely tied to teacher pedagogical con- tent knowledge, formative assessment literacy needs to also be a topic of CS teacher PD. This position paper addresses the broad need to understand formative assessment and build a framework to understand the what, why, and how of formative assessment of introductory programming in K-12 CS. It shares specific pro- gramming examples to articulate the cycle of formative assessment, diagnostic evaluation, feedback, and action. The design of formative assessment items is informed by CS research on assessment design, albeit related largely to summative assessment and in CS1 contexts, and learning of programming, especially student misconceptions. It describes what teacher formative assessment literacy PD should entail and how to catalyze assessment-focusedmore »collaboration among K-12 CS teachers through assessment platforms and repositories.« less
  5. The AP Computer Science Principles (CSP) high school course introduces students to computer science and programming. What should motivated students study after successful completion of AP CSP? The AP CSA class teaches Java programming and it has traditionally not attracted students from underrepresented groups. We are working on an alternative, projects-based course that will teach cutting edge CS concepts, such as distributed computing, computer networking, cybersecurity, the internet of things and machine learning, in a hands-on, accessible manner. Such an approach enables students to work on problems that interest them making computing more relevant and the curriculum more engaging. We utilize NetsBlox, a collaborative, block-based programming environment that extends Snap! with a few carefully selected abstractions that open up the vast array of resources freely available on the internet for student programs. Moreover, the tool enables students to work together on the same project remotely similarly to how Google Docs operate. This demonstration will introduce the environment and highlight its utility in creating distributed applications such as a shared whiteboard app and projects that access public domain scientific data sources and visualize them in various ways using online services such as Google Maps or charting. More information is available atmore »« less
  6. The Covid-19 pandemic has offered new challenges and opportunities for teaching and research. It has forced constraints on in-person gathering of researchers, teachers, and students, and conversely, has also opened doors to creative instructional design. This paper describes a novel approach to designing an online, synchronous teacher professional development (PD) and curriculum co-design experience. It shares our work in bringing together high school teachers and researchers in four US states. The teachers participated in a 3-week summer PD on ideas of Distributed Computing and how to teach this advanced topic to high school students using NetsBlox, an extension of the Snap! block-based programming environment. The goal of the PD was to prepare teachers to engage in collaborative co-design of a 9-week curricular module for use in classrooms and schools. Between their own training and the co-design process, teachers co-taught a group of high school students enrolled in a remote summer internship at a university in North Carolina to pilot the learned units and leverage ideas from their teaching experience for subsequent curricular co-design. Formative and summative feedback from teachers suggest that this PD model was successful in meeting desired outcomes. Our generalizable FIRST principles—Flexibility, Innovativeness, Responsiveness (and Respect), Supports, andmore »Teamwork (collaboration)—that helped make this unique PD successful, can help guide future CS teacher PD designs.« less
  7. C2STEM is a web-based learning environment founded on a novel paradigm that combines block-structured, visual programming with the concept of domain specific modeling languages (DSMLs) to promote the synergistic learning of discipline-specific and computational thinking (CT) concepts and practices. Our design-based, collaborative learning environment aims to provide students in K-12 classrooms with immersive experiences in CT through computational modeling in realistic scenarios (e.g., building models of scientific phenomena). The goal is to increase student engagement and include inclusive opportunities for developing key computational skills needed for the 21st century workforce. Research implementations that include a semester-long high school physics classroom study have demonstrated the effectiveness of our approach in supporting synergistic learning of STEM and CS/CT concepts and practices, especially when compared to a traditional classroom approach. This technology demonstration will showcase our CS+X (X = physics, marine biology, or earth science) learning environment and associated curricula. Participants can engage in our design process and learn how to develop curricular modules that cover STEM and CS/CT concepts and practices. Our work is supported by an NSF STEM+C grant and involves a multi-institutional team comprising Vanderbilt University, SRI International, Looking Glass Ventures, Stanford University, Salem State University, and ETR. More information,more »including example computational modeling tasks, can be found at« less