skip to main content


Search for: All records

Creators/Authors contains: "Grover, Shuchi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Artificial Intelligence (AI) and cybersecurity are becoming increasingly intertwined, with AI and Machine Learning (AI/ML) being leveraged for cybersecurity, and cybersecurity helping address issues caused by AI. The goal in our exploratory curricular initiative is to dovetail the need to teach these two critical, emerging topics in highschool, and create a suite of novel activities, 'AI & Cybersecurity for Teens' (ACT) that introduces AI/ML in the context of cybersecurity and prepares high school teachers to integrate them in their cybersecurity curricula. Additionally, ACT activities are designed such that teachers (and students) build a deeper understanding of how ML works and how the machine actually "learns". Such understanding will aid more meaningful interrogation of critical issues such as AI ethics and bias. ACT introduces core ML topics contextualized in cybersecurity topics through a range of programming activities and pre-programmed games in NetsBlox, an easy-to-use block-based programming environment. We conducted 2 pilot workshops with 12 high school cybersecurity teachers focused on ACT activities. Teachers' feedback was positive and encouraging but also highlighted potential challenges in implementing ACT in the classroom. This paper reports on our approach and activities design, and teachers' experiences and feedback on integrating AI into high school cybersecurity curricula. 
    more » « less
    Free, publicly-accessible full text available March 2, 2024
  2. Existing approaches to teaching artifcial intelligence and machine learning (ML) often focus on the use of pre-trained models or fne-tuning an existing black-box architecture. We believe ML techniques and core ML topics, such as optimization and adversarial examples, can be designed for high school age students given appropriate support. Our curricular approach focuses on teaching ML ideas by enabling students to develop deep intuition about these complex concepts by first making them accessible to novices through interactive tools, pre-programmed games, and carefully designed programming activities. Then, students are able to engage with the concepts via meaningful, hands-on experiences that span the entire ML process from data collection to model optimization and inspection. This paper describes our AI & Cybersecurity for Teens suite of curricular activities aimed at high school students and teachers. 
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  3. Free, publicly-accessible full text available December 1, 2023
  4. Existing approaches to teaching artificial intelligence and machine learning often focus on the use of pre-trained models or fine-tuning an existing black-box architecture. We believe advanced ML topics, such as optimization and adversarial examples, can be learned by early high school age students given appropriate support. Our approach focuses on enabling students to develop deep intuition about these complex concepts by first making them accessible to novices through interactive tools, pre-programmed games, and carefully designed programming activities. Then, students are able to engage with the concepts via meaningful, hands-on experiences that span the entire ML process from data collection to model optimization and inspection. 
    more » « less
  5. Historically, female students have shown low interest in the field of computer science. Previous computer science curricula have failed to address the lack of female-centered computer science activities, such as socially relevant and real-life applications. Our new summer camp curriculum introduces the topics of artificial intelligence (AI), machine learning (ML) and other real-world subjects to engage high school girls in computing by connecting lessons to relevant and cutting edge technologies. Topics range from social media bots, sentiment of natural language in different media, and the role of AI in criminal justice, and focus on programming activities in the NetsBlox and Python programming languages. Summer camp teachers were prepared in a week-long pedagogy and peer-teaching centered professional development program where they concurrently learned and practiced teaching the curriculum to one another. Then, pairs of teachers led students in learning through hands-on AI and ML activities in a half-day, two-week summer camp. In this paper, we discuss the curriculum development and implementation, as well as survey feedback from both teachers and students. 
    more » « less
  6. The Computer Science Frontiers (CSF) project introduces teachers to the topics of artificial intelligence and distributed computing to engage their female students in computing by connecting lessons to relevant cutting edge technologies. Application topics include social media and news articles, as well as climate change, the arts (movies, music, and museum collections), and public health/medicine. CSF educators are prepared in a pedagogy and peer-teaching centered professional development program where they simultaneously learn and teach distributed computing, artificial intelligence, and internet of things lessons to each other. These professional developments allow educators to hone in on their teaching skills of these new topics and gain confidence in their ability to teach new computer science materials before running several activities with their students in the academic year classroom. In this workshop, teachers participating in the CS Frontiers professional development will give testimonials discussing their experiences teaching these topics in a two week summer camp. Attendees will then try out three computing activities, one from each Computer Science Frontiers module. Finally, there will be a question and answer session. 
    more » « less
  7. null (Ed.)
    Unlike summative assessment that is aimed at grading students at the end of a unit or academic term, formative assessment is assess- ment for learning, aimed at monitoring ongoing student learning to provide feedback to both student and teacher, so that learning gaps can be addressed during the learning process. Education research points to formative assessment as a crucial vehicle for improving student learning. Formative assessment in K-12 CS and program- ming classrooms remains a crucial unaddressed need. Given that assessment for learning is closely tied to teacher pedagogical con- tent knowledge, formative assessment literacy needs to also be a topic of CS teacher PD. This position paper addresses the broad need to understand formative assessment and build a framework to understand the what, why, and how of formative assessment of introductory programming in K-12 CS. It shares specific pro- gramming examples to articulate the cycle of formative assessment, diagnostic evaluation, feedback, and action. The design of formative assessment items is informed by CS research on assessment design, albeit related largely to summative assessment and in CS1 contexts, and learning of programming, especially student misconceptions. It describes what teacher formative assessment literacy PD should entail and how to catalyze assessment-focused collaboration among K-12 CS teachers through assessment platforms and repositories. 
    more » « less
  8. null (Ed.)
    The AP Computer Science Principles (CSP) high school course introduces students to computer science and programming. What should motivated students study after successful completion of AP CSP? The AP CSA class teaches Java programming and it has traditionally not attracted students from underrepresented groups. We are working on an alternative, projects-based course that will teach cutting edge CS concepts, such as distributed computing, computer networking, cybersecurity, the internet of things and machine learning, in a hands-on, accessible manner. Such an approach enables students to work on problems that interest them making computing more relevant and the curriculum more engaging. We utilize NetsBlox, a collaborative, block-based programming environment that extends Snap! with a few carefully selected abstractions that open up the vast array of resources freely available on the internet for student programs. Moreover, the tool enables students to work together on the same project remotely similarly to how Google Docs operate. This demonstration will introduce the environment and highlight its utility in creating distributed applications such as a shared whiteboard app and projects that access public domain scientific data sources and visualize them in various ways using online services such as Google Maps or charting. More information is available at https://netsblox.org. 
    more » « less