skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Halpern-Leistner, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop a new method for analyzing moduli problems related to the stack of pure coherent sheaves on a polarized family of projective schemes. It is an infinite-dimensional analogue of Geometric Invariant Theory. We apply this to two familiar moduli problems: the stack of Λ-modules and the stack of pairs. In both examples, we construct a Θ-stratification of the stack, defined in terms of a polynomial numerical invariant, and we construct good moduli spaces for the open substacks of semistable points. One of the essential ingredients is the construction of higher-dimensional analogues of the affine Grassmannian for the moduli problems considered. 
    more » « less
  2. We give a variant of Artin algebraization along closed subschemes and closed substacks. Our main application is the existence of étale, smooth, or syntomic neighborhoods of closed subschemes and closed substacks. In particular, we prove local structure theorems for stacks and their derived counterparts and the existence of henselizations along linearly fundamental closed substacks. These results establish the existence of Ferrand pushouts, which answers positively a question of Temkin-Tyomkin. 
    more » « less
  3. null (Ed.)
  4. III, Hal Daumé; Singh, Aarti (Ed.)
    Studying the set of exact solutions of a system of polynomial equations largely depends on a single iterative algorithm, known as Buchberger’s algorithm. Optimized versions of this algorithm are crucial for many computer algebra systems (e.g., Mathematica, Maple, Sage). We introduce a new approach to Buchberger’s algorithm that uses reinforcement learning agents to perform S-pair selection, a key step in the algorithm. We then study how the difficulty of the problem depends on the choices of domain and distribution of polynomials, about which little is known. Finally, we train a policy model using proximal policy optimization (PPO) to learn S-pair selection strategies for random systems of binomial equations. In certain domains, the trained model outperforms state-of-the-art selection heuristics in total number of polynomial additions performed, which provides a proof-of-concept that recent developments in machine learning have the potential to improve performance of algorithms in symbolic computation. 
    more » « less
  5. null (Ed.)
    We prove that K-polystable log Fano pairs have reductive automorphism groups. In fact, we deduce this statement by establishing more general results concerning the S-completeness and Θ-reductivity of the moduli of K-semistable log Fano pairs. Assuming the conjecture that K-semistability is an open condition, we prove that the Artin stack parametrizing K-semistable Fano varieties admits a separated good moduli space. 
    more » « less
  6. null (Ed.)