The formation of complex organic molecules (COMs) in interstellar conditions is influenced by several different processes occurring both in the gas and solid phases. Here we perform an extension of previous work to understand the influence of electronically excited metastable species on condensed phase COM formation via insertion-type reactions. These reactions involve the insertion of a chemical entity on a previously existing chemical bond. Such insertion processes involving a metastable species allow for rapid reactions with the surrounding grain ice in the absence of activation energy or diffusion barriers even under cold, dark cloud conditions. In this paper, the production of a number of interstellar species including COMs in cold dark clouds is treated both via the metastable process as well as existing suggested pathways such as radical recombination and hydrogenation of unsaturated species in order to gain insight about the relative importance of the newly added process.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT In the interstellar medium (ISM), the formation of complex organic molecules (COMs) is largely facilitated by surface reactions. However, in cold dark clouds, thermal desorption of COMs is inefficient because of the lack of thermal energy to overcome binding energies to the grain surface. Non-thermal desorption methods are therefore important explanations for the gas-phase detection of many COMs that are primarily formed on grains. Here, we present a new non-thermal desorption process: cosmic ray sputtering of grain ice surfaces based on water, carbon dioxide, and a simple mixed ice. Our model applies estimated rates of sputtering to the three-phase rate equation model nautilus-1.1, where this inclusion results in enhanced gas-phase abundances for molecules produced by grain reactions such as methanol (CH3OH) and methyl formate (HCOOCH3). Notably, species with efficient gas-phase destruction pathways exhibit less of an increase in models with sputtering compared to other molecules. These model results suggest that sputtering is an efficient, non-specific method of non-thermal desorption that should be considered as an important factor in future chemical models.
-
Abstract Chemical models and experiments indicate that interstellar dust grains and their ice mantles play an important role in the production of complex organic molecules (COMs). To date, the most complex solid-phase molecule detected with certainty in the interstellar medium is methanol, but the James Webb Space Telescope (JWST) may be able to identify still larger organic species. In this study, we use a coupled chemodynamical model to predict new candidate species for JWST detection toward the young star-forming core Cha-MMS1, combining the gas–grain chemical kinetic code MAGICKAL with a 1D radiative hydrodynamics simulation using Athena++ . With this model, the relative abundances of the main ice constituents with respect to water toward the core center match well with typical observational values, providing a firm basis to explore the ice chemistry. Six oxygen-bearing COMs (ethanol, dimethyl ether, acetaldehyde, methyl formate, methoxy methanol, and acetic acid), as well as formic acid, show abundances as high as, or exceeding, 0.01% with respect to water ice. Based on the modeled ice composition, the infrared spectrum is synthesized to diagnose the detectability of the new ice species. The contribution of COMs to IR absorption bands is minor compared to the main ice constituents, andmore »Free, publicly-accessible full text available August 1, 2023
-
The observation and synthesis of organic molecules in interstellar space is one of the most exciting and rapidly growing topics in astrochemistry. Spectroscopic observations especially with millimeter and submillimeter waves have resulted in the detection of more than 250 molecules in the interstellar clouds from which stars and planets are ultimately formed. In this review, we focus on the diverse suggestions made to explain the formation of Complex Organic Molecules (COMs) in the low-temperature interstellar medium. The dominant mechanisms at such low temperatures are still a matter of dispute, with both gas-phase and granular processes, occurring on and in ice mantles, thought to play a role. Granular mechanisms include both diffusive and nondiffusive processes. A granular explanation is strengthened by experiments at 10 K that indicate that the synthesis of large molecules on granular ice mantles under space-like conditions is exceedingly efficient, with and without external radiation. In addition, the bombardment of carbon-containing ice mantles in the laboratory by cosmic rays, which are mainly high-energy protons, can lead to organic species even at low temperatures. For processes on dust grains to be competitive at low temperatures, however, non-thermal desorption mechanisms must be invoked to explain why the organic molecules are detectedmore »
-
ABSTRACT The detection of many complex organic molecules (COMs) in interstellar space has sparked the study of their origins. While the formation of COMs detected in hot cores is attributed to photochemistry on warming grain surfaces followed by recombination of radicals and desorption, the formation routes in colder regions are still a debated issue with a number of theories such as cosmic ray bombardment on interstellar ice mantles or non-diffusive surface chemistry. Here, we present another method with reactions involving metastable atomic oxygen in the O(1D) state, which is initially produced by photodissociation of oxygen-containing species in interstellar ices. As a first example, we study the reactions of metastable oxygen atoms and methane in ices to form both formaldehyde and methanol. The reaction is studied incorporating two different surface processes: diffusive and non-diffusive chemistry. The formation of methanol and formaldehyde via metastable oxygen atoms is compared with well-known formation routes of both to understand the O(1D) contributions at different temperatures.
-
Abstract A new, more comprehensive model of gas–grain chemistry in hot molecular cores is presented, in which nondiffusive reaction processes on dust-grain surfaces and in ice mantles are implemented alongside traditional diffusive surface/bulk-ice chemistry. We build on our nondiffusive treatments used for chemistry in cold sources, adopting a standard collapse/warm-up physical model for hot cores. A number of other new chemical model inputs and treatments are also explored in depth, culminating in a final model that demonstrates excellent agreement with gas-phase observational abundances for many molecules, including some (e.g., methoxymethanol) that could not be reproduced by conventional diffusive mechanisms. The observed ratios of structural isomers methyl formate, glycolaldehyde, and acetic acid are well reproduced by the models. The main temperature regimes in which various complex organic molecules (COMs) are formed are identified. Nondiffusive chemistry advances the production of many COMs to much earlier times and lower temperatures than in previous model implementations. Those species may form either as by-products of simple-ice production, or via early photochemistry within the ices while external UV photons can still penetrate. Cosmic ray-induced photochemistry is less important than in past models, although it affects some species strongly over long timescales. Another production regime occurs duringmore »
-
Uncertainties in the production mechanisms of interstellar complex organic molecules call for a precise investigation of gas-phase synthetic routes for these molecules, especially at low temperatures. Here, we report a study of the gas-phase formation of dimethyl ether from the neutral radicals methyl and methoxy via the process of radiative association. This process may be important to synthesize dimethyl ether and species such as methyl formate, for which dimethyl ether is a precursor. The reaction is found to be rapid by the standards of radiative association, especially at 10 K, where its rate coefficient is calculated by two different methods to be 3 × 10−11 or 2 × 10−10 cm3 s−1; the lower rate is calculated with a more precise theory and is likely more accurate. Insertion of this reaction into the Nautilus network is found not to explain fully the abundance of dimethyl ether in cold and prestellar cores, especially in those cores with the highest dimethyl ether abundances.
-
ABSTRACT Complex organic molecules (COMs) have been detected in a variety of interstellar sources. The abundances of these COMs in warming sources can be explained by syntheses linked to increasing temperatures and densities, allowing quasi-thermal chemical reactions to occur rapidly enough to produce observable amounts of COMs, both in the gas phase, and upon dust grain ice mantles. The COMs produced on grains then become gaseous as the temperature increases sufficiently to allow their thermal desorption. The recent observation of gaseous COMs in cold sources has not been fully explained by these gas-phase and dust grain production routes. Radiolysis chemistry is a possible non-thermal method of producing COMs in cold dark clouds. This new method greatly increases the modelled abundance of selected COMs upon the ice surface and within the ice mantle due to excitation and ionization events from cosmic ray bombardment. We examine the effect of radiolysis on three C2H4O2 isomers – methyl formate (HCOOCH3), glycolaldehyde (HCOCH2OH), and acetic acid (CH3COOH) – and a chemically similar molecule, dimethyl ether (CH3OCH3), in cold dark clouds. We then compare our modelled gaseous abundances with observed abundances in TMC-1, L1689B, and B1-b.
-
Abstract Active galactic nucleus (AGN) feedback is postulated as a key mechanism for regulating star formation within galaxies. Studying the physical properties of the outflowing gas from AGNs is thus crucial for understanding the coevolution of galaxies and supermassive black holes. Here we report 55 pc resolution ALMA neutral atomic carbon [C
i ]3P 1−3P 0observations toward the central 1 kpc of the nearby Type 2 Seyfert galaxy NGC 1068, supplemented by 55 pc resolution CO(J = 1−0) observations. We find that [Ci ] emission within the central kiloparsec is strongly enhanced by a factor of >5 compared to the typical [Ci ]/CO intensity ratio of ∼0.2 for nearby starburst galaxies (in units of brightness temperature). The most [Ci ]-enhanced gas (ratio > 1) exhibits a kiloparsec-scale elongated structure centered at the AGN that matches the known biconical ionized gas outflow entraining molecular gas in the disk. A truncated, decelerating bicone model explains well the kinematics of the elongated structure, indicating that the [Ci ] enhancement is predominantly driven by the interaction between the ISM in the disk and the highly inclined ionized gas outflow (which is likely driven by the radio jet). Our results strongly favor the “CO dissociation scenario” rather than the “in situ C formation” one,more »