skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hua, Yindong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Heart rate, a commonly accessible health data from most wearables, carries rich information of a person’s well-being, yet remains of limited deep health applications, due to the lack of groundtruth of health events and their impact on heart rate patterns. Specifically, standard health analytics usually are designed based on well-modeled health conditions thus known data patterns and rich training data. To bridge the gap, we propose HeartInsightify, an exploratory framework that facilitates the process of deriving health-relevant measurable indicators from longitudinal heart rate data, without any of the above knowledge. HeartInsightify focuses on comparative and qualitative study, using model-free statistical methods such as conformal prediction, to study similarities, perform clustering and detect outliers, and build multi-resolutional data summaries, allowing human experts to efficiently examine and verify their health relevance. We conduct extensive experiments to evaluate HeartInsightify using individuals’ free-living heart rate data collected through Fitbit over 6 years. We illustrate the process of analyzing heart rate data for its health relevance and demonstrate the effectiveness of HeartInsightify. We envision that HeartInsightify lays the groundwork for personalized health analytics with continuous monitoring data from wearables. 
    more » « less
    Free, publicly-accessible full text available December 5, 2024
  2. Free, publicly-accessible full text available December 5, 2024
  3. Free, publicly-accessible full text available December 5, 2024
  4. Abstract

    The increasing prevalence of wearable devices enables low-cost, long-term collection of health relevant data such as heart rate, exercise, and sleep signals. Currently these data are used to monitor short term changes with limited interpretation of their relevance to health. These data provide an untapped resource to monitor daily and long-term activity patterns. Changes and trends identified from such data can provide insights and guidance to the management of many chronic conditions that change over time. In this study we conducted a machine learning based analysis of longitudinal heart rate data collected over multiple years from Fitbit devices. We built a multi-resolutional pipeline for time series analysis, using model-free clustering methods inspired by statistical conformal prediction framework. With this method, we were able to detect health relevant events, their interesting patterns (e.g., daily routines, seasonal differences, and anomalies), and correlations to acute and chronic changes in health conditions. We present the results, lessons, and insights learned, and how to address the challenge of lack of labels. The study confirms the value of long-term heart rate data for health monitoring and surveillance, as complementary to extensive yet intermittent examinations by health care providers.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  5. A data collection infrastructure is vital for generating sufficient amounts and diversity of data necessary for developing algorithms in home-based health monitoring. However, the manageability— deployment and operation efforts—of such an infrastructure has long been overlooked. Even a small size of a dozen homes may incur enormous manual efforts on the research team, including installing, configuring and updating of sensor, edge devices; continuous monitoring for faults and errors to prevent data losses, and integrating new sensing modalities. In this paper, we present Proteus, an easily managed infrastructure designed to automate much of the work in deploying and operating such systems. Proteus includes: i) scalable, continuous deployment and update of devices with automatic bootstrapping; ii) automatic fault and error monitoring and recovery with watchdogs and LED feedback, and complementary edge and cloud storage backups; and iii) an easy-to-use data-agnostic pipeline for integrating new modalities. We demonstrate our system’s robustness through different sets of experiments: 3 sensor nodes running for 24 days sending data (17.3 Mbps aggregate rate), and 16 emulated sensors (92.8 Mbps aggregate rate). All such experiments have data loss rates less than 1%. Further we reduce human efforts by 25-fold and code required for adding new data modality by 25-fold. Our results show that Proteus is a promising solution for enabling research teams to effectively manage home-based health monitoring at small to medium sizes. 
    more » « less
  6. Radar-based solutions support practical and longi- tudinal respiration monitoring owing to their non-invasive nature. Nighttime respiration monitoring at home provides rich and high- quality data, mostly free of motion disturbances because the user is quasi-stationary during sleep, and 6-8 hours per day rather than tens of minutes, promising for longitudinal studies. However, most existing work was conducted in laboratory environments for short periods, thus the environment, user motions, and postures can differ significantly from those in real homes. To understand how to obtain quality, overnight respiration data in real homes, we conduct a thorough experimental study with 6 participants of various sleep postures over 9 nights in 4 real-home testbeds, each configured with 3–4 sensors around the bed. We first compare the performance among four typical sensor placements around the bed to understand which is the optimal location for high quality data. Then we explore methods to track range bins with high quality signals as occasional user motions change the distance thus signal qualities, and different aspects of amplitude and phase data to further improve the signal quality using metrics of the periodicity-to-noise ratio (PNR) and end-to-end (e2e) accuracy. The experiments demonstrate that the sensor placement is a vital factor, and the bedside is an optimal choice considering both accuracy and ease of deployment (2.65 bpm error at 80 percentile), also consistent among four typical sleep postures. We also observe that, a proper range bin selection method can improve the PNR by 2 dB at 75-percentile, and e2e accuracy by 0.9 bpm at 80-percentile. Both amplitude and phase data have comparable e2e accuracy, while phase is more sensitive to motions thus suitable for nighttime movement detection. Based on these discoveries, we develop a few simple practical guidelines useful for the community to achieve high quality, longitudinal home- based overnight respiration monitoring. 
    more » « less
  7. Home-based health monitoring systems are important to many conditions (e.g., aging, chronic diseases). The absence of suitable data collection infrastructure is a fundamental barrier to the development of related algorithms and systems. In this poster, we present Proteus, a robust, extensible and scalable data collection infrastructure, to enable small research teams to manage large deployments. We identify the desired features and achieve them by combining mature technologies and new components: i) extensibility with new, diverse sensor types and data formats with a few lines of coding (LOC) efforts; ii) scalability in managing sensor/edge devices to automate many deployment, management tasks; iii) resilience to system failures and network outage. Experiments on a prototype show zero data loss or system error for one sensor node running 10 days, and 99.95% of data received for 32 emulated sensors sending data at 200 Mbps, 20 and 100 fold reductions in node setup efforts and LOC for new sensor types. The preliminary results show Proteus is promising for large-scale longitudinal deployment of home-based health monitoring. 
    more » « less