skip to main content

Search for: All records

Creators/Authors contains: "Huang, Xudong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning analytics, referring to the measurement, collection, analysis, and reporting of data about learners and their contexts in order to optimize learning and the environments in which it occurs, is proving to be a powerful approach for understanding and improving science learning. However, few studies focused on leveraging learning analytics to assess hands-on laboratory skills in K-12 science classrooms. This study demonstrated the feasibility of gauging laboratory skills based on students’ process data logged by a mobile augmented reality (AR) application for conducting science experiments. Students can use the mobile AR technology to investigate a variety of science phenomena that involve concepts central to physics understanding. Seventy-two students from a suburban middle school in the Northeastern United States participated in this study. They conducted experiments in pairs. Mining process data using Bayesian networks showed that most students who participated in this study demonstrated some degree of proficiency in laboratory skills. Also, findings indicated a positive correlation between laboratory skills and conceptual learning. The results suggested that learning analytics provides a possible solution to measure hands-on laboratory learning in real-time and at scale. 
    more » « less
  2. null (Ed.)
    Augmented reality (AR) has the potential to fundamentally transform science education by making learning of abstract science ideas tangible and engaging. However, little is known about how students interacted with AR technologies and how these interactions may affect learning performance in science laboratories. This study examined high school students’ navigation patterns and science learning with a mobile AR technology, developed by the research team, in laboratory settings. The AR technology allows students to conduct hands-on laboratory experiments and interactively explore various science phenomena covering biology, chemistry, and physics concepts. In this study, seventy ninth-grade students carried out science laboratory experiments in pairs to learn thermodynamics. Our cluster analysis identified two groups of students, which differed significantly in navigation length and breadth. The two groups demonstrated unique navigation patterns that revealed students’ various ways of observing, describing, exploring, and evaluating science phenomena. These navigation patterns were associated with learning performance as measured by scores on lab reports. The results suggested the need for providing access to multiple representations and different types of interactions with these representations to support effective science learning as well as designing representations and connections between representations to cultivate scientific reasoning skills and nuanced understanding of scientific processes. 
    more » « less
  3. null (Ed.)
    Laboratory experiences are a staple of science education (National Research Council 2006): Not only do they provide students with an avenue to acquire authentic skills needed for scientific research, referred to as science and engineering practices by NGSS, but they also allow students to go beyond rote memorization of facts to deepen their understanding of science through inquiry. 
    more » « less
  4. Integrating engineering design into K-12 curricula is increasingly important as engineering has been incorporated into many STEM education standards. However, the ill-structured and open-ended nature of engineering design makes it difficult for an instructor to keep track of the design processes of all students simultaneously and provide personalized feedback on a timely basis. This study proposes a Bayesian network model to dynamically and automatically assess students’ engagement with engineering design tasks and to support formative feedback. Specifically, we applied a Bayesian network to 111 ninth-grade students’ process data logged by a computer-aided design software program that students used to solve an engineering design challenge. Evidence was extracted from the log files and fed into the Bayesian network to perform inferential reasoning and provide a barometer of their performance in the form of posterior probabilities. Results showed that the Bayesian network model was competent at predicting a student’s task performance. It performed well in both identifying students of a particular group (recall) and ensuring identified students were correctly labeled (precision). This study also suggests that Bayesian networks can be used to pinpoint a student’s strengths and weaknesses for applying relevant science knowledge to engineering design tasks. Future work of implementing this tool within the computer-aided design software will provide instructors a powerful tool to facilitate engineering design through automatically generating personalized feedback to students in real time. 
    more » « less
  5. In this paper, we demonstrate how machine learning could be used to quickly assess a student’s multimodal representational thinking. Multimodal representational thinking is the complex construct that encodes how students form conceptual, perceptual, graphical, or mathematical symbols in their mind. The augmented reality (AR) technology is adopted to diversify student’s representations. The AR technology utilized a low-cost, high-resolution thermal camera attached to a smartphone which allows students to explore the unseen world of thermodynamics. Ninth-grade students (N= 314) engaged in a prediction–observation–explanation (POE) inquiry cycle scaffolded to leverage the augmented observation provided by the aforementioned device. The objective is to investigate how machine learning could expedite the automated assessment of multimodal representational thinking of heat energy. Two automated text classification methods were adopted to decode different mental representations students used to explain their haptic perception, thermal imaging, and graph data collected in the lab. Since current automated assessment in science education rarely considers multilabel classification, we resorted to the help of the state-of-the-art deep learning technique—bidirectional encoder representations from transformers (BERT). The BERT model classified open-ended responses into appropriate categories with higher precision than the traditional machine learning method. The satisfactory accuracy of deep learning in assigning multiple labels is revolutionary in processing qualitative data. The complex student construct, such as multimodal representational thinking, is rarely mutually exclusive. The study avails a convenient technique to analyze qualitative data that does not satisfy the mutual-exclusiveness assumption. Implications and future studies are discussed. 
    more » « less
  6. Research on self-regulated learning (SRL) in engineering design is growing. While SRL is an effective way of learning, however, not all learners can regulate themselves successfully. There is a lack of research regarding how student characteristics, such as science knowledge and design knowledge, interact with SRL. Adapting the SRL theory in the field of engineering design, this study proposes a research model to examine the mediation and causal relationships among science knowledge, design knowledge, and SRL activities (i.e. observation, formulation, reformulation, analysis, evaluation). Partial least squares modeling was utilized to examine how the science and design knowledge of 108 ninth-grade participants interacted with their SRL activities in the process of performing an engineering task. Results reveal that prior science and design knowledge positively predict SRL activities. They also show that reformulation and analysis are the two SRL activities that can lead to an improvement in post science and design knowledge, but excessive observation can hinder post design knowledge. These results have important implications for the construction of learning environments to support SRL based on students’ prior knowledge levels. 
    more » « less
  7. Abstract Background

    With the increasing popularity of distance education, how to engage students in online inquiry‐based laboratories remains challenging for science teachers. Current remote labs mostly adopt a centralized model with limited flexibility left for teachers' just‐in‐time instruction based on students' real‐time science practices.


    The goal of this research is to investigate the impact of a non‐centralized remote lab on students' cognitive and behavioural engagement.


    A mixed‐methods design was adopted. Participants were the high school students enrolled in two virtual chemistry classes. Remote labs 2.0, branded as Telelab, supports a non‐centralized model of remote inquiry that can enact more interactive hands‐on labs anywhere, anytime. Teleinquiry Instructional Model was used to guide the curriculum design. Students' clickstreams logs and instruction timestamps were analysed and visualized. Multiple regression analysis was used to determine whether engagement levels influence their conceptual learning. Behavioural engagement patterns were corroborated with survey responses.

    Results and Conclusions

    We found approximate synchronizations between student–teacher–lab interactions in the heatmap. The guided inquiry enabled by Telelab facilitates real‐time communications between instructors and students. Students' conceptual learning is found to be impacted by varying engagement levels. Students' behavioural engagement patterns can be visualized and fed to instructors to inform learning progress and enact just‐in‐time instruction.


    Telelab offers a model of remote labs 2.0 that can be easily customized to live stream hands‐on teleinquiry. It enhances engagement and gives participants a sense of telepresence. Providing a customizable teleinquiry curriculum for practitioners may better prepare them to teach inquiry‐based laboratories online.

    more » « less