Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We combine photometric data from GALEX GR6+7 All-Sky Imaging Survey and Gaia Early Data Release 3 with stellar parameters from the SAGA and PASTEL catalogs to construct high-quality training samples for dwarfs (0.4 < BP − RP < 1.6) and giants (0.6 < BP − RP < 1.6). We apply careful reddening corrections using empirical temperature- and extinction-dependent extinction coefficients. Using the two samples, we establish a relationship between stellar loci (near-ultraviolet (NUV)−BP versus BP − RP colors), metallicity, andMG. For a given BP − RP color, a 1 dex change in [Fe/H] corresponds to an approximately 1 magnitude change in NUV − BP color for solar-type stars. These relationships are employed to estimate metallicities based on NUV − BP, BP − RP, andMG. Thanks to the strong metallicity dependence in the GALEX NUV band, our models enable a typical photometric-metallicity precision of approximatelyσ[Fe/H]= 0.11 dex for dwarfs andσ[Fe/H]= 0.17 dex for giants, with an effective metallicity range extending down to [Fe/H] = −3.0 for dwarfs and [Fe/H] = −4.0 for giants. We also find that the NUV-band-based photometric-metallicity estimate is not as strongly affected by carbon enhancement as previous photometric techniques. With the GALEX and Gaia data, we have estimated metallicities for about 5 million stars across almost the entire sky, including approximately 4.5 million dwarfs and 0.5 million giants. This work demonstrates the potential of the NUV band for estimating photometric metallicities, and sets the groundwork for utilizing the NUV data from space telescopes such as the upcoming Chinese Space Station Telescope.more » « less
-
Abstract We search for an optimal filter design for the estimation of stellar metallicity, based on synthetic photometry from Gaia XP spectra convolved with a series of filter-transmission curves defined by different central wavelengths and bandwidths. Unlike previous designs based solely on maximizing metallicity sensitivity, we find that the optimal solution provides a balance between the sensitivity and uncertainty of the spectra. With this optimal filter design, the best precision of metallicity estimates for relatively bright (G∼ 11.5) stars is excellent,σ[Fe/H]= 0.034 dex for FGK dwarf stars, superior to that obtained utilizing custom sensitivity-optimized filters (e.g., SkyMapperv). By selecting hundreds of high-probability member stars of the open cluster M67, our analysis reveals that the intrinsic photometric-metallicity scatter of these cluster members is only 0.036 dex, consistent with this level of precision. Our results clearly demonstrate that the internal precision of photometric-metallicity estimates can be extremely high, even providing the opportunity to perform chemical tagging for very large numbers of field stars in the Milky Way. This experiment shows that it is crucial to take into account uncertainty alongside the sensitivity when designing filters for measuring the stellar metallicity and other parameters.more » « lessFree, publicly-accessible full text available June 1, 2025
-
Abstract Photometric stellar surveys now cover a large fraction of the sky, probe to fainter magnitudes than large-scale spectroscopic surveys, and are relatively free from the target selection biases often associated with such studies. Photometric-metallicity estimates that include narrow/medium-band filters can achieve comparable accuracy and precision to existing low-resolution spectroscopic surveys such as Sloan Digital Sky Survey/SEGUE and LAMOST. Here we report on an effort to identify likely members of the Galactic disk system among the very metal-poor (VMP; [Fe/H] ≤ −2) and extremely metal-poor (EMP; [Fe/H] ≤ −3) stars. Our analysis is based on an initial sample of ∼11.5 million stars with full space motions selected from the SkyMapper Southern Survey (SMSS) and Stellar Abundance and Galactic Evolution Survey (SAGES). After applying a number of quality cuts to obtain the best available metallicity and dynamical estimates, we analyze a total of ∼5.86 million stars in the combined SMSS/SAGES sample. We employ two techniques that, depending on the method, identify between 876 and 1476 VMP stars (6.9%−11.7% of all VMP stars) and between 40 and 59 EMP stars (12.4%−18.3% of all EMP stars) that appear to be members of the Galactic disk system on highly prograde orbits (vϕ> 150 km s−1). The total number of candidate VMP/EMP disklike stars is 1496, the majority of which have low orbital eccentricities, ecc ≤ 0.4; many have ecc ≤ 0.2. The large fractions of VMP/EMP stars associated with the Milky Way disk system strongly suggest the presence of an early-forming “primordial” disk.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Abstract A recent study by Hon et al. reported that a close-in planet around the red clump star, 8 UMi, should have been engulfed during the expansion phase of its parent star’s evolution. They explained the survival of this exoplanet through a binary-merger channel for 8 UMi. The key to testing this formation scenario is to derive the true age of this star: is it an old “imposter” resulting from a binary merger, or a genuinely young red clump giant? To accomplish this, we derive kinematic and chemical properties for 8 UMi using astrometric data from Gaia DR3 and the element-abundance pattern measured from a high-resolution (R∼ 75,000) spectrum taken by SOPHIE. Our analysis shows that 8 UMi is a normal thin-disk star with orbital rotation speed ofVϕ= 244.96 km s−1, and possesses a solar metallicity ([Fe/H] = −0.05 ± 0.07) andα-element-abundance ratio ([α/Fe] = +0.01 ± 0.03). By adopting well-established relationships between age and space velocities/elemental abundances, we estimate a kinematic age of Gyr, and a chemical age of Gyr from [C/N] and 3.47 ± 1.96 Gyr from [Y/Mg] for 8 UMi, respectively. These estimates are consistent with the isochrone-fitting age ( Gyr) of 8 UMi, but are all much younger than the timescale required in a binary-merger scenario. This result challenges the binary-merger model; the existence of such a closely orbiting exoplanet around a giant star remains a mystery yet to be resolved.more » « lessFree, publicly-accessible full text available May 1, 2025
-
Abstract We present a comprehensive recalibration of narrowband/medium-band and broadband photometry from the Southern Photometric Local Universe Survey (S-PLUS) by leveraging two approaches: an improved Gaia XP synthetic photometry (XPSP) method with corrected Gaia XP spectra, and the stellar color regression (SCR) method with corrected Gaia Early Data Release 3 photometric data and spectroscopic data from LAMOST Data Release 7. Through the use of millions of stars as standards per band, we demonstrate the existence of position-dependent systematic errors, up to 23 mmag for the main survey region, in the S-PLUS iDR4 photometric data. A comparison between the XPSP and SCR methods reveals minor differences in zero-point offsets, typically within the range of 1–6 mmag, indicating the accuracy of the recalibration, and a twofold to threefold improvement in the zero-point precision. During this process, we also verify and correct for systematic errors related to CCD position. The corrected S-PLUS iDR4 photometric data will provide a solid data foundation for conducting scientific research that relies on high-precision calibration. Our results underscore the power of the XPSP method in combination with the SCR method, showcasing their effectiveness in enhancing calibration precision for wide-field surveys when combined with Gaia photometry and XP spectra, to be applied for other S-PLUS subsurveys.more » « less
-
ABSTRACT We employ a sample of 135 873 RR Lyrae stars (RRLs) with precise photometric-metallicity and distance estimates from the newly calibrated P–ϕ31–R21–[Fe/H] and Gaia G band P–R21–[Fe/H] absolute magnitude–metallicity relations of Li et al., combined with available proper motions from Gaia EDR3, and 6955 systemic radial velocities from Gaia DR3 and other sources, in order to explore the chemistry and kinematics of the halo of the Milky Way (MW). This sample is ideally suited for characterization of the inner- and outer-halo populations of the stellar halo, free from the bias associated with spectroscopically selected probes, and for estimation of their relative contributions as a function of Galactocentric distance. The results of a Gaussian mixture model analysis of these contributions are broadly consistent with other observational studies of the halo, and with expectations from recent MW simulation studies. We apply the hdbscan clustering method to the specific energies and cylindrical actions (E, Jr, Jϕ, Jz), identifying 97 dynamically tagged groups (DTGs) of RRLs, and explore their associations with recognized substructures of the MW. The precise photometric-distance determinations (relative distance errors on the order of 5 per cent or better), and the resulting high-quality determination of dynamical parameters, yield highly statistically significant (low) dispersions of [Fe/H] for the stellar members of the DTGs compared to random draws from the full sample, indicating that they share common star-formation and chemical histories, influenced by their birth environments.more » « less
-
ABSTRACT We use 3653 (2661 RRab, 992 RRc) RR Lyrae stars (RRLs) with 7D (3D position, 3D velocity, and metallicity) information selected from Sloan Digital Sky Survey, Large Sky Area Multi-Object Fiber Spectroscopic Telescope, and Gaia EDR3, and divide the sample into two Oosterhoff groups (Oo I and Oo II) according to their amplitude–period behaviour in the Bailey diagram. We present a comparative study of these two groups based on chemistry, kinematics, and dynamics. We find that Oo I RRLs are relatively more metal-rich, with predominately radially dominated orbits and large eccentricities, while Oo II RRLs are relatively more metal-poor, and have mildly radially dominated orbits. The Oosterhoff dichotomy of the Milky Way’s halo is more apparent for the inner-halo region than for the outer-halo region. Additionally, we also search for this phenomenon in the haloes of the two largest satellite galaxies, the Large and Small Magellanic clouds, and compare over different bins in metallicity. We find that the Oosterhoff dichotomy is not immutable, and varies based on position in the Galaxy and from galaxy to galaxy. We conclude that the Oosterhoff dichotomy is the result of a combination of stellar and galactic evolution, and that it is much more complex than the dichotomy originally identified in Galactic globular clusters.more » « less
-
Abstract Stereoselective ring-opening polymerization catalysts are used to produce degradable stereoregular poly(lactic acids) with thermal and mechanical properties that are superior to those of atactic polymers. However, the process of discovering highly stereoselective catalysts is still largely empirical. We aim to develop an integrated computational and experimental framework for efficient, predictive catalyst selection and optimization. As a proof of principle, we have developed a Bayesian optimization workflow on a subset of literature results for stereoselective lactide ring-opening polymerization, and using the algorithm, we identify multiple new Al complexes that catalyze either isoselective or heteroselective polymerization. In addition, feature attribution analysis uncovers mechanistically meaningful ligand descriptors, such as percent buried volume (%Vbur) and the highest occupied molecular orbital energy (EHOMO), that can access quantitative and predictive models for catalyst development.more » « less