Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Growing evidence indicates that a selected group of global-scale waves from the lower atmosphere constitute a significant source of ionosphere-thermosphere (IT, 100–600 km) variability. Due to the geometry of the magnetic field lines, this IT coupling occurs mainly at low latitudes ( 30°) and is driven by waves originating in the tropical troposphere such as the diurnal eastward propagating tide with zonal wave number s = −3 (DE3) and the quasi-3-day ultra-fast Kelvin wave with s = −1 (UFKW1). In this work, over 2 years of simultaneousin situion densities from Ion Velocity Meters (IVMs) onboard the Ionospheric Connection Explorer (ICON) near 590 km and the Scintillation Observations and Response of the Ionosphere to Electrodynamics (SORTIE) CubeSat near 420 km, along with remotely-sensed lower (ca. 105 km) and middle (ca. 220 km) thermospheric horizontal winds from ICON’s Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) are employed to demonstrate a rich spectrum of waves coupling these IT regions. Strong DE3 and UFKW1 topside ionospheric variations are traced to lower thermospheric zonal winds, while large diurnal s = 2 (DW2) and zonally symmetric (D0) variations are traced to middle thermospheric winds generatedin situ. Analyses of diurnal tides from the Climatological Tidal Model of the Thermosphere (CTMT) reveal general agreement near 105 km, with larger discrepancies near 220 km due toin situtidal generation not captured by CTMT. This study highlights the utility of simultaneous satellite measurements for studies of IT coupling via global-scale waves.more » « less
-
Abstract The moving solar terminator (ST) generates atmospheric disturbances, broadly termed solar terminator waves (STWs). Despite theoretically recurring daily, STWs remain poorly understood, partially due to measurement challenges near the ST. Analyzing Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) data from NASA's Ionospheric Connection Explorer (ICON) observatory, we present observations of STW signatures in thermospheric neutral winds, including the first reported meridional wind signatures. Seasonal analysis reveals STWs are most prominent during solstices, when they intersect the ST about ∼20° latitude from the equator in the winter hemisphere and have phase fronts inclined at a ∼40° angle to the ST. We also provide the first observed STW altitude profiles, revealing large vertical wavelengths above 200 km. Comparing these observations to four different models suggests the STWs likely originate directly or indirectly from waves from below 97 km. STWs may play an under‐recognized role in the daily variability of the thermosphere‐ionosphere system, warranting further study.more » « less
-
Abstract The design, principles of operation, calibration, and data analysis approaches of the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the NASA Ionospheric Connection (ICON) satellite have been documented prior to the ICON launch. Here we update and expand on the MIGHTI wind data analysis and discuss the on-orbit instrument performance. In particular, we show typical raw data and we describe key processing steps, including the correction of a “signal-intensity dependent phase shift,” which is necessitated by unexpected detector behavior. We describe a new zero-wind calibration approach that is preferred over the originally planned approach due to its higher precision. Similar to the original approach, the new approach is independent of any a priori data. A detailed update on the wind uncertainties is provided and compared to the mission requirements, showing that MIGHTI has met the ICON mission requirements. While MIGHTI observations are not required to produce absolute airglow brightness profiles, we describe a relative brightness profile product, which is included in the published data. We briefly review the spatial resolution of the MIGHTI wind data in addition to the data coverage and data gaps that occurred during the nominal mission. Finally, we include comparisons of the MIGHTI wind data with ground-based Fabry-Perot interferometer observations and meteor radar observations, updating previous studies with more recent data, again showing good agreement. The data processing steps covered in this work and all the derived wind data correspond to the MIGHTI data release Version 5 (v05).more » « less
-
Abstract The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) was launched aboard NASA’s Ionospheric Connection (ICON) Explorer satellite in October 2019 to measure winds and temperatures on the limb in the upper mesosphere and lower thermosphere (MLT). Temperatures are observed using the molecular oxygen atmospheric band near 763 nm from 90–127 km altitude in the daytime and 90–108 km in the nighttime. Here we describe the measurement approach and methodology of the temperature retrieval, including unique on-orbit operations that allow for a better understanding of the instrument response. The MIGHTI measurement approach for temperatures is distinguished by concurrent observations from two different sensors, allowing for two self-consistent temperature products. We compare the MIGHTI temperatures against existing MLT space-borne and ground-based observations. The MIGHTI temperatures are within 7 K of these observations on average from 90–95 km throughout the day and night. In the daytime on average from 99–105 km, MIGHTI temperatures are higher than coincident observations by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on NASA’s TIMED satellite by 18 K. Because the difference between the MIGHTI and SABER observations is predominantly a constant bias at a given altitude, conclusions of scientific analyses that are based on temperature variations are largely unaffected.more » « less
-
Abstract Following the 2022 Tonga Volcano eruption, dramatic suppression and deformation of the equatorial ionization anomaly (EIA) crests occurred in the American sector ∼14,000 km away from the epicenter. The EIA crests variations and associated ionosphere‐thermosphere disturbances were investigated using Global Navigation Satellite System total electron content data, Global‐scale Observations of the Limb and Disk ultraviolet images, Ionospheric Connection Explorer wind data, and ionosonde observations. The main results are as follows: (a) Following the eastward passage of expected eruption‐induced atmospheric disturbances, daytime EIA crests, especially the southern one, showed severe suppression of more than 10 TEC Unit and collapsed equatorward over 10° latitudes, forming a single band of enhanced density near the geomagnetic equator around 14–17 UT, (b) Evening EIA crests experienced a drastic deformation around 22 UT, forming a unique X‐pattern in a limited longitudinal area between 20 and 40°W. (c) Thermospheric horizontal winds, especially the zonal winds, showed long‐lasting quasi‐periodic fluctuations between ±200 m/s for 7–8 hr after the passage of volcano‐induced Lamb waves. The EIA suppression and X‐pattern merging was consistent with a westward equatorial zonal dynamo electric field induced by the strong zonal wind oscillation with a westward reversal.more » « less
-
Abstract We report the first lidar observations of regular occurrence of mid‐latitude thermosphere‐ionosphere Na (TINa) layers over Boulder (40.13°N, 105.24°W), Colorado. Detection of tenuous Na layers (∼0.1–1 cm−3from 150 to 130 km) was enabled by high‐sensitivity Na Doppler lidar. TINa layers occur regularly in various months and years, descending from ∼125 km after dusk and from ∼150 km before dawn. The downward‐progression phase speeds are ∼3 m/s above 120 km and ∼1 m/s below 115 km, consistent with semidiurnal tidal phase speeds. One or more layers sometimes occur across local midnight. Elevated volume mixing ratios above the turning point (∼105–110 km) of Na density slope suggest in situ production of the dawn/dusk layers via neutralization of converged Na+layers. Vertical drift velocity of TINa+calculated with the Ionospheric Connection Explorer Hough Mode Extension tidal winds shows convergent ion flow phases aligned well with TINa, supporting this formation hypothesis.more » « less