Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

We study the problem of representing all distances between n points in Rd, with arbitrarily small distortion, using as few bits as possible. We give asymptotically tight bounds for this problem, for Euclidean metrics, for ℓ1 (a.k.a.~Manhattan) metrics, and for general metrics. Our bounds for Euclidean metrics mark the first improvement over compression schemes based on discretizing the classical dimensionality reduction theorem of Johnson and Lindenstrauss (Contemp.~Math.~1984). Since it is known that no better dimension reduction is possible, our results establish that Euclidean metric compression is possible beyond dimension reduction.more » « less

Histograms, i.e., piecewise constant approximations, are a popular tool used to represent data distributions. Traditionally, the difference between the histogram and the underlying distribution (i.e., the approximation error) is measured using the Lp norm, which sums the differences between the two functions over all items in the domain. Although useful in many applications, the drawback of this error measure is that it treats approximation errors of all items in the same way, irrespective of whether the mass of an item is important for the downstream application that uses the approximation. As a result, even relatively simple distributions cannot be approximated by succinct histograms without incurring large error. In this paper, we address this issue by adapting the definition of approximation so that only the errors of the items that belong to the support of the distribution are considered. Under this definition, we develop efficient 1pass and 2pass streaming algorithms that compute nearoptimal histograms in sublinear space. We also present lower bounds on the space complexity of this problem. Surprisingly, under this notion of error, there is an exponential gap in the space complexity of 1pass and 2pass streaming algorithms. Finally, we demonstrate the utility of our algorithms on a collection of real and synthetic data sets.more » « less

Datadriven algorithms can adapt their internal structure or parameters to inputs from unknown applicationspecific distributions, by learning from a training sample of inputs. Several recent works have applied this approach to problems in numerical linear algebra, obtaining significant empirical gains in performance. However, no theoretical explanation for their success was known. In this work we prove generalization bounds for those algorithms, within the PAClearning framework for datadriven algorithm selection proposed by Gupta and Roughgarden (SICOMP 2017). Our main results are closely matching upper and lower bounds on the fat shattering dimension of the learningbased low rank approximation algorithm of Indyk et al.~(NeurIPS 2019). Our techniques are general, and provide generalization bounds for many other recently proposed datadriven algorithms in numerical linear algebra, covering both sketchingbased and multigridbased methods. This considerably broadens the class of datadriven algorithms for which a PAClearning analysis is available.more » « less

A* is a classic and popular method for graphs search and path finding. It assumes the existence of a heuristic function h(u,t) that estimates the shortest distance from any input node u to the destination t. Traditionally, heuristics have been handcrafted by domain experts. However, over the last few years, there has been a growing interest in learning heuristic functions. Such learned heuristics estimate the distance between given nodes based on "features" of those nodes. In this paper we formalize and initiate the study of such featurebased heuristics. In particular, we consider heuristics induced by norm embeddings and distance labeling schemes, and provide lower bounds for the tradeoffs between the number of dimensions or bits used to represent each graph node, and the running time of the A* algorithm. We also show that, under natural assumptions, our lower bounds are almost optimal.more » « less

We consider online algorithms for the page migration problem that use predictions, potentially imperfect, to improve their performance. The best known online algorithms for this problem, due to Westbrook’94 and Bienkowski et al’17, have competitive ratios strictly bounded away from 1. In contrast, we show that if the algorithm is given a prediction of the input sequence, then it can achieve a competitive ratio that tends to 1 as the prediction error rate tends to 0. Specifically, the competitive ratio is equal to 1+O(q), where q is the prediction error rate. We also design a “fallback option” that ensures that the competitive ratio of the algorithm for any input sequence is at most O(1/q). Our result adds to the recent body of work that uses machine learning to improve the performance of “classic” algorithms.more » « less

We propose datadriven onepass streaming algorithms for estimating the number of triangles and four cycles, two fundamental problems in graph analytics that are widely studied in the graph data stream literature. Recently, Hsu et al. (2019a) and Jiang et al. (2020) applied machine learning techniques in other data stream problems, using a trained oracle that can predict certain properties of the stream elements to improve on prior “classical” algorithms that did not use oracles. In this paper, we explore the power of a “heavy edge” oracle in multiple graph edge streaming models. In the adjacency list model, we present a onepass triangle counting algorithm improving upon the previous space upper bounds without such an oracle. In the arbitrary order model, we present algorithms for both triangle and four cycle estimation with fewer passes and the same space complexity as in previous algorithms, and we show several of these bounds are optimal. We analyze our algorithms under several noise models, showing that the algorithms perform well even when the oracle errs. Our methodology expands upon prior work on “classical” streaming algorithms, as previous multipass and random order streaming algorithms can be seen as special cases of our algorithms, where the first pass or random order was used to implement the heavy edge oracle. Lastly, our experiments demonstrate advantages of the proposed method compared to stateoftheart streaming algorithms.more » « less

Random dimensionality reduction is a versatile tool for speeding up algorithms for highdimensional problems. We study its application to two clustering problems: the facility location problem, and the singlelinkage hierarchical clustering problem, which is equivalent to computing the minimum spanning tree. We show that if we project the input pointset 𝑋 onto a random 𝑑=𝑂(𝑑𝑋)dimensional subspace (where 𝑑𝑋 is the doubling dimension of 𝑋), then the optimum facility location cost in the projected space approximates the original cost up to a constant factor. We show an analogous statement for minimum spanning tree, but with the dimension 𝑑 having an extra loglog𝑛 term and the approximation factor being arbitrarily close to 1. Furthermore, we extend these results to approximating solutions instead of just their costs. Lastly, we provide experimental results to validate the quality of solutions and the speedup due to the dimensionality reduction. Unlike several previous papers studying this approach in the context of 𝑘means and 𝑘medians, our dimension bound does not depend on the number of clusters but only on the intrinsic dimensionality of 𝑋.more » « less

null (Ed.)We study fast algorithms for computing basic properties of an n x n positive semidefinite kernel matrix K corresponding to n points x_1,...,x_n in R^d. In particular, we consider the estimating the sum of kernel matrix entries, along with its top eigenvalue and eigenvector. These are some of the most basic problems defined over kernel matrices. We show that the sum of matrix entries can be estimated up to a multiplicative factor of 1+epsilon in time sublinear in n and linear in d for many popular kernel functions, including the Gaussian, exponential, and rational quadratic kernels. For these kernels, we also show that the top eigenvalue (and a witnessing approximate eigenvector) can be approximated to a multiplicative factor of 1+epsilon in time subquadratic in n and linear in d. Our algorithms represent significant advances in the best known runtimes for these problems. They leverage the positive definiteness of the kernel matrix, along with a recent line of work on efficient kernel density estimation.more » « less

We study the Fractional Set Cover problem in the streaming model. That is, we consider the relaxation of the set cover problem over a universe of n elements and a collection of m sets, where each set can be picked fractionally, with a value in [0,1]. We present a randomized (1+a)approximation algorithm that makes p passes over the data, and uses O(polylog(m,n,1/a) (mn^(O(1/(pa)))+n)) memory space. The algorithm works in both the set arrival and the edge arrival models. To the best of our knowledge, this is the first streaming result for the fractional set cover problem. We obtain our results by employing the multiplicative weights update framework in the streaming settings.more » « less