skip to main content

Search for: All records

Creators/Authors contains: "Ito, Takashi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 20, 2023
  2. Many of the unusual properties of Pluto’s orbit are widely accepted as evidence for the orbital migration of the giant planets in early solar system history. However, some properties remain an enigma. Pluto’s long-term orbital stability is supported by two special properties of its orbit that limit the location of its perihelion in azimuth and in latitude. We revisit Pluto’s orbital dynamics with a view to elucidating the individual and collective gravitational effects of the giant planets on constraining its perihelion location. While the resonant perturbations from Neptune account for the azimuthal constraint on Pluto’s perihelion location, we demonstrate that the long-term and steady persistence of the latitudinal constraint is possible only in a narrow range of additional secular forcing which arises fortuitously from the particular orbital architecture of the other giant planets. Our investigations also find that Jupiter has a largely stabilizing influence whereas Uranus has a largely destabilizing influence on Pluto’s orbit. Overall, Pluto’s orbit is rather surprisingly close to a zone of strong chaos.
  3. Abstract

    Itokawa particles, which are samples recovered from the S-complex asteroid 25143 Itokawa by the Hayabusa spacecraft, demonstrate that S-complex asteroids are parent bodies of ordinary chondrite meteorites. Furthermore, they clarify that the space-weathering age of the Itokawa surface is of the order of several thousand years. Traditionally, Q-type asteroids have been considered fresh-surfaced. However, as the space-weathering timescale is approximately three orders of magnitude lesser than the conventionally considered age, the previously proposed formation mechanisms of Q-type asteroids cannot sufficiently explain the surface refreshening. In this study, we propose a new hypothesis on the surface state of Q-type asteroids: Q-type asteroids have a non-fresh weathered surface with a paucity of fine particles. For verifying this hypothesis, laboratory experiments on the space weathering of ordinary chondrites are performed. Based on the results of these experiments, we found that large (more than $100\, \mu \mathrm{m}$) ordinary chondritic particles with space weathering exhibit spectra consistent with Q-type asteroids.