skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Xin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 30, 2026
  2. Free, publicly-accessible full text available March 31, 2026
  3. Afforestation and reforestation, both of which refer to forestation strategies, are widely promoted as key tools to mitigate anthropogenic warming. However, the carbon sequestration potential of these efforts remains uncertain in satellite-based assessments, particularly when accounting for dynamic climate conditions, vegetation-climate feedback, fire-dominated disturbance, and the trade-offs associated with surface albedo changes. Leveraging a coupled Earth system model, we estimated that global forestation mitigates 31.3 to 69.2 Pg Ceq(carbon equivalent) during 2021–2100 under a sustainable shared socioeconomic pathway. Regionally, the highest carbon mitigation potential of forestation concentrates in tropical areas, while mid-high-latitude regions demonstrate higher heterogeneity, highlighting the need for region-specific strategies and further refinement of nature-based mitigation plans. Our findings underscore the importance of considering disturbances and minimizing adverse albedo changes when estimating the carbon mitigation potential of forestation initiatives. We also advocate for the development of consistent, high-resolution maps of suitable areas for targeted forestation, avoiding environmentally sensitive lands and potential conflicts with other human activities. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  4. Free, publicly-accessible full text available March 22, 2026
  5. In this paper we theoretically and experimentally demonstrate a novel adaptation of independent component analysis (ICA) for compensation of both cross-polarization and inter-symbol interference in a direct-detection link using Stokes vector modulation (SVM). SVM systems suffer from multiple simultaneous impairments that can be difficult to resolve with conventional optical channel DSP techniques. The proposed method is based on a six-dimensional adaptation of ICA that simultaneously de-rotates the SVM constellation, corrects distortion of constellation shape, and mitigates inter-symbol interference (ISI) at high symbol rates. Experimental results at 7.5 Gb/s and 15Gb/s show that the newly developed ICA-based equalizer achieves power penalties below ∼1 dB, compared to the ideal theoretical bit-error rate (BER) curves. At 30-Gb/s, where ISI is more severe, ICA still enables polarization de-rotation and BER < 10−5before error correction. 
    more » « less
  6. A novel non-cubic constellation for eightfold Stokes vector modulation improves modulation loss, link budget, and intersymbol interference at high speed, while using simpler drive signals. Experiments confirm 5.2 dB improvement at 30 Gb/s. 
    more » « less
  7. Abstract Mountain treelines are thought to be sensitive to climate change. However, how climate impacts mountain treelines is not yet fully understood as treelines may also be affected by other human activities. Here, we focus on “closed‐loop” mountain treelines (CLMT) that completely encircle a mountain and are less likely to have been influenced by human land‐use change. We detect a total length of ~916,425 km of CLMT across 243 mountain ranges globally and reveal a bimodal latitudinal distribution of treeline elevations with higher treeline elevations occurring at greater distances from the coast. Spatially, we find that temperature is the main climatic driver of treeline elevation in boreal and tropical regions, whereas precipitation drives CLMT position in temperate zones. Temporally, we show that 70% of CLMT have moved upward, with a mean shift rate of 1.2 m/year over the first decade of the 21st century. CLMT are shifting fastest in the tropics (mean of 3.1 m/year), but with greater variability. Our work provides a new mountain treeline database that isolates climate impacts from other anthropogenic pressures, and has important implications for biodiversity, natural resources, and ecosystem adaptation in a changing climate. 
    more » « less
  8. Abstract: A novel adaptation of independent component analysis controls both cross-polarization and inter-symbol interference in a direct-detection link using Stokes vector modulation. 30-Gb/s experiments confirm polarization de-rotation and near-error-free transmission. 
    more » « less