skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jin, Zhenong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Accurate and cost-effective quantification of the carbon cycle for agroecosystems at decision-relevant scales is critical to mitigating climate change and ensuring sustainable food production. However, conventional process-based or data-driven modeling approaches alone have large prediction uncertainties due to the complex biogeochemical processes to model and the lack of observations to constrain many key state and flux variables. Here we propose a Knowledge-Guided Machine Learning (KGML) framework that addresses the above challenges by integrating knowledge embedded in a process-based model, high-resolution remote sensing observations, and machine learning (ML) techniques. Using the U.S. Corn Belt as a testbed, we demonstrate that KGML can outperform conventional process-based and black-box ML models in quantifying carbon cycle dynamics. Our high-resolution approach quantitatively reveals 86% more spatial detail of soil organic carbon changes than conventional coarse-resolution approaches. Moreover, we outline a protocol for improving KGML via various paths, which can be generalized to develop hybrid models to better predict complex earth system dynamics.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Training machine learning (ML) models for scientific problems is often challenging due to limited observation data. To overcome this challenge, prior works commonly pre-train ML models using simulated data before having them fine-tuned with small real data. Despite the promise shown in initial research across different domains, these methods cannot ensure improved performance after fine-tuning because (i) they are not designed for extracting generalizable physics-aware features during pre-training, (ii) the features learned from pre-training can be distorted by the fine-tuning process. In this paper, we propose a new learning method for extracting, preserving, and adapting physics-aware features. We build a knowledge-guided neural network (KGNN) model based on known dependencies amongst physical variables, which facilitate extracting physics-aware feature representation from simulated data. Then we fine-tune this model by alternately updating the encoder and decoder of the KGNN model to enhance the prediction while preserving the physics-aware features learned through pre-training. We further propose to adapt the model to new testing scenarios via a teacher-student learning framework based on the model uncertainty. The results demonstrate that the proposed method outperforms many baselines by a good margin, even using sparse training data or under out-of-sample testing scenarios. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  3. Training machine learning (ML) models for scientific problems is often challenging due to limited observation data. To overcome this challenge, prior works commonly pre-train ML models using simulated data before having them fine-tuned with small real data. Despite the promise shown in initial research across different domains, these methods cannot ensure improved performance after fine-tuning because (i) they are not designed for extracting generalizable physics-aware features during pre-training, (ii) the features learned from pre-training can be distorted by the fine-tuning process. In this paper, we propose a new learning method for extracting, preserving, and adapting physics-aware features. We build a knowledge-guided neural network (KGNN) model based on known dependencies amongst physical variables, which facilitate extracting physics-aware feature representation from simulated data. Then we fine-tune this model by alternately updating the encoder and decoder of the KGNN model to enhance the prediction while preserving the physics-aware features learned through pre-training. We further propose to adapt the model to new testing scenarios via a teacher-student learning framework based on the model uncertainty. The results demonstrate that the proposed method outperforms many baselines by a good margin, even using sparse training data or under out-of-sample testing scenarios. 
    more » « less
  4. Accurate prediction of water quality and quantity is crucial for sustainable development and human well-being. However, existing data-driven methods often suffer from spatial biases in model performance due to heterogeneous data, limited observations, and noisy sensor data. To overcome these challenges, we propose Fair-Graph, a novel graph-based recurrent neural network that leverages interrelated knowledge from multiple rivers to predict water flow and temperature within large-scale stream networks. Additionally, we introduce node-specific graph masks for information aggregation and adaptation to enhance prediction over heterogeneous river segments. To reduce performance disparities across river segments, we introduce a centralized coordination strategy that adjusts training priorities for segments. We evaluate the prediction of water temperature within the Delaware River Basin, and the prediction of streamflow using simulated data from U.S. National Water Model in the Houston River network. The results showcase improvements in predictive performance and highlight the proposed model's ability to maintain spatial fairness over different river segments.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  5. Spatio-temporal machine learning is critically needed for a variety of societal applications, such as agricultural monitoring, hydrological forecast, and traffic management. These applications greatly rely on regional features that characterize spatial and temporal differences. However, spatio-temporal data often exhibit complex patterns and significant data variability across different locations. The labels in many real-world applications can also be limited, which makes it difficult to separately train independent models for different locations. Although meta learning has shown promise in model adaptation with small samples, existing meta learning methods remain limited in handling a large number of heterogeneous tasks, e.g., a large number of locations with varying data patterns. To bridge the gap, we propose task-adaptive formulations and a model-agnostic meta-learning framework that transforms regionally heterogeneous data into location-sensitive meta tasks. We conduct task adaptation following an easy-to-hard task hierarchy in which different meta models are adapted to tasks of different difficulty levels. One major advantage of our proposed method is that it improves the model adaptation to a large number of heterogeneous tasks. It also enhances the model generalization by automatically adapting the meta model of the corresponding difficulty level to any new tasks. We demonstrate the superiority of our proposed framework over a diverse set of baselines and state-of-the-art meta-learning frameworks. Our extensive experiments on real crop yield data show the effectiveness of the proposed method in handling spatial-related heterogeneous tasks in real societal applications.

     
    more » « less
  6. This paper proposes a physics-guided neural network model to predict crop yield and maintain the fairness over space. Failures to preserve the spatial fairness in predicted maps of crop yields can result in biased policies and intervention strategies in the distribution of assistance or subsidies in supporting individuals at risk. Existing methods for fairness enforcement are not designed for capturing the complex physical processes that underlie the crop growing process, and thus are unable to produce good predictions over large regions under different weather conditions and soil properties. More importantly, the fairness is often degraded when existing methods are applied to different years due to the change of weather conditions and farming practices. To address these issues, we propose a physics-guided neural network model, which leverages the physical knowledge from existing physics-based models to guide the extraction of representative physical information and discover the temporal data shift across years. In particular, we use a reweighting strategy to discover the relationship between training years and testing years using the physics-aware representation. Then the physics-guided neural network will be refined via a bi-level optimization process based on the reweighted fairness objective. The proposed method has been evaluated using real county-level crop yield data and simulated data produced by a physics-based model. The results demonstrate that this method can significantly improve the predictive performance and preserve the spatial fairness when generalized to different years.

     
    more » « less
  7. Abstract

    Cover crops have long been seen as an effective management practice to increase soil organic carbon (SOC) and reduce nitrogen (N) leaching. However, there are large uncertainties in quantifying these ecosystem services using either observation (e.g. field measurement, remote sensing data) or process-based modeling. In this study, we developed and implemented a model–data fusion (MDF) framework to improve the quantification of cover crop benefits in SOC accrual and N retention in central Illinois by integrating process-based modeling and remotely-sensed observations. Specifically, we first constrained and validated the process-based agroecosystem model,ecosys, using observations of cover crop aboveground biomass derived from satellite-based spectral signals, which is highly consistent with field measurements. Then, we compared the simulated cover crop benefits in SOC accrual and N leaching reduction with and without the constraints of remotely-sensed cover crop aboveground biomass. When benchmarked with remote sensing-based observations, the constrained simulations all show significant improvements in quantifying cover crop aboveground biomass C compared with the unconstrained ones, withR2increasing from 0.60 to 0.87, and root mean square error (RMSE) and absolute bias decreasing by 64% and 97%, respectively. On all study sites, the constrained simulations of aboveground biomass C and N at termination are 29% and 35% lower than the unconstrained ones on average. Correspondingly, the averages of simulated SOC accrual and N retention net benefits are 31% and 23% lower than the unconstrained simulations, respectively. Our results show that the MDF framework with remotely-sensed biomass constraints effectively reduced the uncertainties in cover crop biomass simulations, which further constrained the quantification of cover crop-induced ecosystem services in increasing SOC and reducing N leaching.

     
    more » « less