Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This research paper is a study of the support needs of nontraditional students in engineering (NTSE). Nontraditional students in engineering are one segment of the student body that has traditionally not been a part of the conversation in engineering education– those students who do not go through a typical four-year college degree largely at a residential campus. It is only by better understanding the range of issues that NTSE face that we will be able to design interventions and support systems that can assist them. Recent work in engineering education particularly argues that co-curricular support is a critical factor in student success as it effects curricular progress but there has been no work looking specifically at co-curricular support for NTSE and their retention and persistence. The population of NTSE is increasing across campuses as more students take on jobs to support their education and as those in the workforce return to complete their education. It is imperative that higher educational systems understand how to serve the needs of these students better. Although there are a range of ways in which nontraditional students (NTS) are defined, the NCES has proposed a comprehensive definition that includes enrollment criteria, financial and family status,more »
-
Algorithms are a central component of most services we use across a range of domains. These services, platforms, and devices rely on computing and technology professionals – who work as data scientists, programmers, or artificial intelligence (AI) experts – to meet their intended goals. How do we train future professionals to have an ethical mindset in their understanding, design, and implementation of algorithms? This was the question that prompted the use of a role-playing case study, which we designed, implemented, and studied in an undergraduate engineering course. We used the Boeing Max 8 flight disaster as the scenario for this case study as it encapsulates how a software algorithm shapes decision-making in a complex scenario. Theoretically, our work is guided by the situated learning paradigm, specifically the need to learn perspectival thinking for decision-making. The ability to make ethical decisions relies to a large extent on the ability of the decision-maker to take context into account – to understand not just the immediate technical need of the work but also larger implications that might even result from unanticipated consequences. Findings from the evaluation of the role-play scenario show that students reported a higher engagement with case study material and amore »
-
There remains a lack of research on professional engineering work practices [1]. This deficiency is troubling because engineering education is organized and reorganized based on claims and assumptions about what professional engineering work is or will be. Without well-researched and trustworthy representations of practice, it is questionable whether engineering educators can adequately prepare future engineers for workplace realities. Although it is important that the preparation of future engineers not be tied solely to the workforce, there is a significant “disconnect between engineers in practice and engineers in academe” [2, p. 18]. If educators want to prepare students for professional success – including by assuming roles as future leaders and change agents – concrete images of engineering work are critical resources for rethinking engineering education [1]. The need for such resources is even more urgent given ongoing changes to engineering work under the forces of globalization, new organizational configurations, and new technologies of communication, design, and production. More research is needed to document images that are often discounted by students and even faculty, i.e., portrayals of engineering practice that emphasize its non-technical and non-calculative sides, as well as its non-individual aspects [3-4]. The aim of this work-in-progress paper is to introducemore »
-
There remains a lack of research on professional engineering work practices [1]. This deficiency is troubling because engineering education is organized and reorganized based on claims and assumptions about what professional engineering work is or will be. Without well-researched and trustworthy representations of practice, it is questionable whether engineering educators can adequately prepare future engineers for workplace realities. Although it is important that the preparation of future engineers not be tied solely to the workforce, there is a significant “disconnect between engineers in practice and engineers in academe” [2, p. 18]. If educators want to prepare students for professional success – including by assuming roles as future leaders and change agents – concrete images of engineering work are critical resources for rethinking engineering education [1]. The need for such resources is even more urgent given ongoing changes to engineering work under the forces of globalization, new organizational configurations, and new technologies of communication, design, and production. More research is needed to document images that are often discounted by students and even faculty, i.e., portrayals of engineering practice that emphasize its non-technical and non-calculative sides, as well as its non-individual aspects [3-4]. The aim of this work-in-progress paper is to introducemore »
-
Community engagement efforts have become an important avenue for raising public interest and know-how related to engineering. These efforts draw the young and the diverse into seeing engineering as a worthwhile profession. One such effort at the national level in the U.S. is the “National Engineers Week”. This is a week-long celebration held every February that consists of numerous events and activities organized for the general public with a focus towards students, women, and under-represented groups. In this paper, we examined this effort through the lens of social media and analyzed Twitter data collected for two hashtags used during the National Engineers Week 2017: “#eweek2017” and “#engineersweek”. Our dataset consisted of 6,583 original tweets and 10,885 retweets. To study the impact of the outreach we used three analytical approaches: descriptive analysis, content analysis, and network analysis. We found that the Twitter campaign participation was dominated by engineering companies and individual users followed by a limited participation of educational institutions, professional engineering associations, and non-profits. As opposed to other popular hashtag campaigns, not a single news media organization was identified as a participating user signaling a lower new media-driven propagation of the campaign among the public. From a content perspective, themore »
-
Workforce development in engineering is a high priority to keep pace with innovation and change within engineering disciplines and also within organizations. Increasingly, workforce development requires more retraining and retooling of employees than ever before as information technology has accelerated both the creation of a new body of knowledge and also the skills required to perform the work. In this paper we present a field study of a highly dynamic workplace – a cybersecurity firm – undertaken to better understand how engineers keep up with the pace of knowledge that is needed for their work. Fifteen professionals, with a wide range of experience and educational background, were interviewed. Data were analyzed iteratively and interpretively. The findings from the study suggest that over time some well-defined ways of learning had developed in the workplace we studied. These learning practices combined in-person and online interactions and resources. We also found that learning was triggered largely by the need to solve a problem or by the interests of the engineers to learn more in order to be prepared for new knowledge in the field. Depending on the problem they faced, the engineers mapped the requirements of what was needed to solve the problem,more »