Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recent developments in domains such as non-local games, quantum interactive proofs, and quantum generative adversarial networks have renewed interest in quantum game theory and, specifically, quantum zero-sum games. Central to classical game theory is the efficient algorithmic computation of Nash equilibria, which represent optimal strategies for both players. In 2008, Jain and Watrous proposed the first classical algorithm for computing equilibria in quantum zerosum games using the Matrix Multiplicative Weight Updates (MMWU) method to achieve a convergence rate of O(d/ε2) iterations to ε-Nash equilibria in the 4d-dimensional spectraplex. In this work, we propose a hierarchy of quantum optimization algorithms that generalize MMWU via an extra-gradient mechanism. Notably, within this proposed hierarchy, we introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as O(d/ε) iterations to ε-Nash equilibria. This quadratic speed-up relative to Jain and Watrous’ original algorithm sets a new benchmark for computing ε-Nash equilibria in quantum zero-sum games.more » « less
-
Numerous applications in machine learning and data analytics can be formulated as equilibrium computation over Riemannian manifolds. Despite the extensive investigation of their Euclidean counterparts, the performance of Riemannian gradient-based algorithms remain opaque and poorly understood. We revisit the original scheme of Riemannian gradient descent (RGD) and analyze it under a geodesic monotonicity assumption, which includes the well-studied geodesically convex-concave min-max optimization problem as a special case. Our main contribution is to show that, despite the phenomenon of distance distortion, the RGD scheme, with a step size that is agnostic to the manifold's curvature, achieves a curvature-independent and linear last-iterate convergence rate in the geodesically strongly monotone setting. To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence in the Riemannian setting has not been considered before.more » « less
-
We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as \emph{Recursive One-Over-T SGD} (\ROOTSGD), based on an easily implementable, recursive averaging of past stochastic gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an asymptotic sense. On the nonasymptotic side, we prove risk bounds on the last iterate of \ROOTSGD with leading-order terms that match the optimal statistical risk with a unity pre-factor, along with a higher-order term that scales at the sharp rate of O(n−3/2) under the Lipschitz condition on the Hessian matrix. On the asymptotic side, we show that when a mild, one-point Hessian continuity condition is imposed, the rescaled last iterate of (multi-epoch) \ROOTSGD converges asymptotically to a Gaussian limit with the Cram\'{e}r-Rao optimal asymptotic covariance, for a broad range of step-size choices.more » « less
-
Loh, P; Raginsky, M. (Ed.)We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as \emph{Recursive One-Over-T SGD} (\ROOTSGD), based on an easily implementable, recursive averaging of past stochastic gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an asymptotic sense. On the nonasymptotic side, we prove risk bounds on the last iterate of \ROOTSGD with leading-order terms that match the optimal statistical risk with a unity pre-factor, along with a higher-order term that scales at the sharp rate of $$O(n^{-3/2})$$ under the Lipschitz condition on the Hessian matrix. On the asymptotic side, we show that when a mild, one-point Hessian continuity condition is imposed, the rescaled last iterate of (multi-epoch) \ROOTSGD converges asymptotically to a Gaussian limit with the Cram\'{e}r-Rao optimal asymptotic covariance, for a broad range of step-size choices.more » « less