skip to main content

Search for: All records

Creators/Authors contains: "Kannan, Sampath"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. xisting network switches implement scheduling disciplines such as FIFO or deficit round robin that provide good utilization or fairness across flows, but do so at the expense of leaking a variety of information via timing side channels. To address this privacy breach, we propose a new scheduling mechanism for switches called indifferent-first scheduling (IFS). A salient aspect of IFS is that it provides privacy (a notion of strong isolation) to clients that opt-in, while preserving the (good) performance and utilization of FIFO or round robin for clients that are satisfied with the status quo. Such a hybrid scheduling mechanism addresses the main drawback of prior proposals such as time-division multiple access (TDMA) that provide strong isolation at the cost of low utilization and increased packet latency for all clients. We identify limitations of modern programmable switches which inhibit an implementation of IFS without compromising its privacy guarantees, and show that a version of IFS with full security can be implemented at line rate in the recently proposed push-in-first-out (PIFO) queuing architecture.
  2. We introduce the \emph{pipeline intervention} problem, defined by a layered directed acyclic graph and a set of stochastic matrices governing transitions between successive layers. The graph is a stylized model for how people from different populations are presented opportunities, eventually leading to some reward. In our model, individuals are born into an initial position (i.e. some node in the first layer of the graph) according to a fixed probability distribution, and then stochastically progress through the graph according to the transition matrices, until they reach a node in the final layer of the graph; each node in the final layer has a \emph{reward} associated with it. The pipeline intervention problem asks how to best make costly changes to the transition matrices governing people's stochastic transitions through the graph, subject to a budget constraint. We consider two objectives: social welfare maximization, and a fairness-motivated maximin objective that seeks to maximize the value to the population (starting node) with the \emph{least} expected value. We consider two variants of the maximin objective that turn out to be distinct, depending on whether we demand a deterministic solution or allow randomization. For each objective, we give an efficient approximation algorithm (an additive FPTAS) for constantmore »width networks. We also tightly characterize the "price of fairness" in our setting: the ratio between the highest achievable social welfare and the highest social welfare consistent with a maximin optimal solution. Finally we show that for polynomial width networks, even approximating the maximin objective to any constant factor is NP hard, even for networks with constant depth. This shows that the restriction on the width in our positive results is essential.« less
  3. This paper introduces a new cryptographic primitive called a private resource allocator (PRA) that can be used to allocate resources (e.g., network bandwidth, CPUs) to a set of clients without revealing to the clients whether any other clients received resources. We give several constructions of PRAs that provide guarantees ranging from information-theoretic to differential privacy. PRAs are useful in preventing a new class of attacks that we call allocation-based side-channel attacks. These attacks can be used, for example, to break the privacy guarantees of anonymous messaging systems that were designed specifically to defend against side-channel and traffic analysis attacks. Our implementation of PRAs in Alpenhorn, which is a recent anonymous messaging system, shows that PRAs increase the network resources required to start a conversation by up to 16× (can be made as low as 4×in some cases), but add no overhead once the conversation has been established.
  4. Suppose a graph G is stochastically created by uniformly sampling vertices along a line segment and connecting each pair of vertices with a probability that is a known decreasing function of their distance. We ask if it is possible to reconstruct the actual positions of the vertices in G by only observing the generated unlabeled graph. We study this question for two natural edge probability functions — one where the probability of an edge decays exponentially with the distance and another where this probability decays only linearly. We initiate our study with the weaker goal of recovering only the order in which vertices appear on the line segment. For a segment of length n and a precision parameter δ, we show that for both exponential and linear decay edge probability functions, there is an efficient algorithm that correctly recovers (up to reflection symmetry) the order of all vertices that are at least δ apart, using only ˜ O( n / δ^2) samples (vertices). Building on this result, we then show that O( n^2 log n / δ^2) vertices (samples) are sufficient to additionally recover the location of each vertex on the line to within a precision of δ. We complementmore »this result with an Ω( n^ 1.5 / δ ) lower bound on samples needed for reconstructing positions (even by a computationally unbounded algorithm), showing that the task of recovering positions is information-theoretically harder than recovering the order. We give experimental results showing that our algorithm recovers the positions of almost all points with high accuracy.« less
  5. We consider the problem of designing sublinear time algorithms for estimating the cost of minimum] metric traveling salesman (TSP) tour. Specifically, given access to a n × n distance matrix D that specifies pairwise distances between n points, the goal is to estimate the TSP cost by performing only sublinear (in the size of D) queries. For the closely related problem of estimating the weight of a metric minimum spanning tree (MST), it is known that for any epsilon > 0, there exists an O^~(n/epsilon^O(1))-time algorithm that returns a (1+epsilon)-approximate estimate of the MST cost. This result immediately implies an O^~(n/epsilon^O(1)) time algorithm to estimate the TSP cost to within a (2 + epsilon) factor for any epsilon > 0. However, no o(n^2)-time algorithms are known to approximate metric TSP to a factor that is strictly better than 2. On the other hand, there were also no known barriers that rule out existence of (1 + epsilon)-approximate estimation algorithms for metric TSP with O^~ (n) time for any fixed epsilon > 0. In this paper, we make progress on both algorithms and lower bounds for estimating metric TSP cost. On the algorithmic side, we first consider the graphic TSP problemmore »where the metric D corresponds to shortest path distances in a connected unweighted undirected graph. We show that there exists an O^~(n) time algorithm that estimates the cost of graphic TSP to within a factor of (2 − epsilon_0) for some epsilon_0 > 0. This is the first sublinear cost estimation algorithm for graphic TSP that achieves an approximation factor less than 2. We also consider another well-studied special case of metric TSP, namely, (1, 2)-TSP where all distances are either 1 or 2, and give an O^~(n ^ 1.5) time algorithm to estimate optimal cost to within a factor of 1.625. Our estimation algorithms for graphic TSP as well as for (1, 2)-TSP naturally lend themselves to O^~(n) space streaming algorithms that give an 11/6-approximation for graphic TSP and a 1.625-approximation for (1, 2)-TSP. These results motivate the natural question if analogously to metric MST, for any epsilon > 0, (1 + epsilon)-approximate estimates can be obtained for graphic TSP and (1, 2)-TSP using O^~ (n) queries. We answer this question in the negative – there exists an epsilon_0 > 0, such that any algorithm that estimates the cost of graphic TSP ((1, 2)-TSP) to within a (1 + epsilon_0)-factor, necessarily requires (n^2) queries. This lower bound result highlights a sharp separation between the metric MST and metric TSP problems. Similarly to many classical approximation algorithms for TSP, our sublinear time estimation algorithms utilize subroutines for estimating the size of a maximum matching in the underlying graph. We show that this is not merely an artifact of our approach, and that for any epsilon > 0, any algorithm that estimates the cost of graphic TSP or (1, 2)-TSP to within a (1 + epsilon)-factor, can also be used to estimate the size of a maximum matching in a bipartite graph to within an epsilon n additive error. This connection allows us to translate known lower bounds for matching size estimation in various models to similar lower bounds for metric TSP cost estimation.« less
  6. We study a two-stage model, in which students are 1) admitted to college on the basis of an entrance exam which is a noisy signal about their qualifications (type), and then 2) those students who were admitted to college can be hired by an employer as a function of their college grades, which are an independently drawn noisy signal of their type. Students are drawn from one of two populations, which might have different type distributions. We assume that the employer at the end of the pipeline is rational, in the sense that it computes a posterior distribution on student type conditional on all information that it has available (college admissions, grades, and group membership), and makes a decision based on posterior expectation. We then study what kinds of fairness goals can be achieved by the college by setting its admissions rule and grading policy. For example, the college might have the goal of guaranteeing equal opportunity across populations: that the probability of passing through the pipeline and being hired by the employer should be independent of group membership, conditioned on type. Alternately, the college might have the goal of incentivizing the employer to have a group blind hiring rule.more »We show that both goals can be achieved when the college does not report grades. On the other hand, we show that under reasonable conditions, these goals are impossible to achieve even in isolation when the college uses an (even minimally) informative grading policy« less
  7. We initiate a systematic study of linear sketching over F_2. For a given Boolean function treated as f : F_2^n -> F_2 a randomized F_2-sketch is a distribution M over d x n matrices with elements over F_2 such that Mx suffices for computing f(x) with high probability. Such sketches for d << n can be used to design small-space distributed and streaming algorithms. Motivated by these applications we study a connection between F_2-sketching and a two-player one-way communication game for the corresponding XOR-function. We conjecture that F_2-sketching is optimal for this communication game. Our results confirm this conjecture for multiple important classes of functions: 1) low-degree F_2-polynomials, 2) functions with sparse Fourier spectrum, 3) most symmetric functions, 4) recursive majority function. These results rely on a new structural theorem that shows that F_2-sketching is optimal (up to constant factors) for uniformly distributed inputs. Furthermore, we show that (non-uniform) streaming algorithms that have to process random updates over F_2 can be constructed as F_2-sketches for the uniform distribution. In contrast with the previous work of Li, Nguyen and Woodruff (STOC'14) who show an analogous result for linear sketches over integers in the adversarial setting our result does not require themore »stream length to be triply exponential in n and holds for streams of length O(n) constructed through uniformly random updates.« less