skip to main content

Search for: All records

Creators/Authors contains: "Karch, Andreas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2024
  2. A bstract We investigate the spontaneous breaking of subsystem symmetries directly in the context of continuum field theories by calculating the correlation function of charged operators. Our methods confirm the lack of spontaneous symmetry breaking in some of the existing continuum field theories with subsystem symmetries, as had previously been established based on a careful analysis of the spectrum. We present some novel continuum field theory constructions that do exhibit spontaneous symmetry breaking whenever allowed by general principles. These interesting patterns of symmetry breaking occur despite the fact that all the theories we study are non-interacting. 
    more » « less
  3. A bstract We analyze, in perturbation theory, a theory of weakly interacting fractons and non-relativistic fermions in a 2+1 dimensional Quantum Field Theory. In particular we compute the 1-loop corrections to the self energies and interaction vertex, and calculate the associated 1-loop Renormalization Group flows of the coupling constants. Surprisingly, we find that the fracton-fermion coupling does not flow due to an emergent coordinate-dependent symmetry of the effective Lagrangian, making this model a well-defined quantum field theory. We provide additional discussions on the regularization and renormalization of interacting fractonic theories, as well as both qualitative and quantitative remarks regarding the theory at finite temperature and finite chemical potential. 
    more » « less
  4. null (Ed.)
  5. Abstract

    The emerging study of fractons, a new type of quasi‐particle with restricted mobility, has motivated the construction of several classes of interesting continuum quantum field theories with novel properties. One such class consists offoliated field theorieswhich, roughly, are built by coupling together fields supported on the leaves of foliations of spacetime. Another approach, which we refer to asexotic field theory, focuses on constructing Lagrangians consistent with special symmetries (like subsystem symmetries) that are adjacent to fracton physics. A third framework is that ofinfinite‐component Chern‐Simons theories, which attempts to generalize the role of conventional Chern‐Simons theory in describing (2+1)D Abelian topological order to fractonic order in (3+1)D. The study of these theories is ongoing, and many of their properties remain to be understood. Historically, it has been fruitful to study QFTs by embedding them into string theory. One way this can be done is via D‐branes, extended objects whose dynamics can, at low energies, be described in terms of conventional quantum field theory. QFTs that can be realized in this way can then be analyzed using the rich mathematical and physical structure of string theory. In this paper, we show that foliated field theories, exotic field theories, and infinite‐component Chern‐Simons theories can all be realized on the world‐volumes of branes. We hope that these constructions will ultimately yield valuable insights into the physics of these interesting field theories.

    more » « less