skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Kim, Jung-Eun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Membership inference attacks (MIAs) are currently considered one of the main privacy attack strategies, and their defense mechanisms have also been extensively explored. However, there is still a gap between the existing defense approaches and ideal models in both performance and deployment costs. In particular, we observed that the privacy vulnerability of the model is closely correlated with the gap between the model's data-memorizing ability and generalization ability. To address it, we propose a new architecture-agnostic training paradigm called Center-based Relaxed Learning (CRL), which is adaptive to any classification model and provides privacy preservation by sacrificing a minimal or no loss of model generalizability. We emphasize that CRL can better maintain the model's consistency between member and non-member data. Through extensive experiments on common classification datasets, we empirically show that this approach exhibits comparable performance without requiring additional model capacity or data costs. 
    more » « less
    Free, publicly-accessible full text available July 16, 2025
  2. Real-time systems power safety-critical applications that require strong isolation among each other. Such isolation needs to be enforced at two orthogonal levels. On the micro-architectural level, this mainly involves avoiding interference through micro-architectural states, such as cache lines. On the algorithmic level, this is usually achieved by adopting real-time partitions to reserve resources for each application. Implementations of such systems are often complex and require formal verification to guarantee proper isolation. In this paper, we focus on algorithmic isolation, which is mainly related to scheduling-induced interferences. We address earliest-deadline-first (EDF) partitions to achieve compositionality and utilization, while imposing constraints on tasks' periods and enforcing budgets on these periodic partitions to ensure isolation between each other. The formal verification of such a real-time OS kernel is challenging due to the inherent complexity of the dynamic priority assignment on the partition level. We tackle this problem by adopting a dynamically constructed abstraction to lift the reasoning of a concrete scheduler into an abstract domain. Using this framework, we verify a real-time operating system kernel with budget-enforcing EDF partitions and prove that it indeed ensures isolation between partitions. All the proofs are mechanized in Coq. 
    more » « less
  3. Real-time systems power safety-critical applications that require strong isolation among each other. Such isolation needs to be enforced at two orthogonal levels. On the micro-architectural level, this mainly involves avoiding interference through micro-architectural states, such as cache lines. On the algorithmic level, this is usually achieved by adopting real-time partitions to reserve resources for each application. Implementations of such systems are often complex and require formal verification to guarantee proper isolation. In this paper, we focus on algorithmic isolation, which is mainly related to scheduling-induced interferences. We address earliest-deadline-first (EDF) partitions to achieve compositionality and utilization, while imposing constraints on tasks' periods and enforcing budgets on these periodic partitions to ensure isolation between each other. The formal verification of such a real-time OS kernel is challenging due to the inherent complexity of the dynamic priority assignment on the partition level. We tackle this problem by adopting a dynamically constructed abstraction to lift the reasoning of a concrete scheduler into an abstract domain. Using this framework, we verify a real-time operating system kernel with budget-enforcing EDF partitions and prove that it indeed ensures isolation between partitions. All the proofs are mechanized in Coq. 
    more » « less
  4. Timing predictability is a precondition for successful communication over a covert timing channel. Real-time systems are particularly vulnerable to timing channels because real-time applications can easily have temporal locality due to limited uncertainty in schedules. In this paper, we show that real-time applications can create hidden information flow even when the temporal isolation among the time partitions is strictly enforced. We then introduce an online algorithm that randomizes time-partition schedules to reduce the temporal locality, while guaranteeing the schedulability of, and thus the temporal isolation among, time partitions. We also present an analysis of the cost of the randomization on the responsiveness of real-time tasks. From an implementation on a Linux-based real-time operating system, we validate the analysis and evaluate the scheduling overhead as well as the impact on an experimental real-time system. 
    more » « less
  5. Network pruning is a widely-used compression technique that is able to significantly scale down overparameterized models with minimal loss of accuracy. This paper shows that pruning may create or exacerbate disparate impacts. The paper sheds light on the factors to cause such disparities, suggesting differences in gradient norms and distance to decision boundary across groups to be responsible for this critical issue. It analyzes these factors in detail, providing both theoretical and empirical support, and proposes a simple, yet effective, solution that mitigates the disparate impacts caused by pruning. 
    more » « less
  6. null (Ed.)
    Hierarchical scheduling enables modular reasoning of the temporal behavior of individual applications by partitioning CPU time and thus isolating potential mis-behavior. However, conventional time-partitioning mechanisms fail to achieve strong temporal isolation from a security viewpoint; variations in the executions of partitions can be perceived by others, which enables an algorithmic covert timing-channel between partitions that are completely isolated from each other in the utilization of time. Thus, we present a run-time algorithm that makes partitions oblivious to others' varying behaviors even when an adversary has full control over their timings. It enables the use of dynamic time-partitioning mechanisms that provide improved responsiveness, while guaranteeing the algorithmic-level non-interference that static approaches would achieve. From an implementation on an existing operating system, we evaluate the costs of the solution in terms of the responsiveness as well as scheduling overhead. 
    more » « less
  7. null (Ed.)
    This paper presents a design framework for machine learning applications that operate in systems such as cyber-physical systems where time is a scarce resource. We manage the tradeoff between processing time and solution quality by performing as much preprocessing of data as time will allow. This approach leads us to a design framework in which there are two separate learning networks: one for preprocessing and one for the core application functionality. We show how these networks can be trained together and how they can operate in an anytime fashion to optimize performance. 
    more » « less
  8. null (Ed.)
    Modern generative techniques, deriving realistic data from incomplete or noisy inputs, require massive computation for rigorous results. These limitations hinder generative techniques from being incorporated in systems in resource-constrained environment, thus motivating methods that grant users control over the time-quality trade-offs for a reasonable "payoff" of execution cost. Hence, as a new paradigm for adaptively organizing and employing recurrent networks, we propose an architectural design for generative modeling achieving flexible quality. We boost the overall efficiency by introducing non-recurrent layers into stacked recurrent architectures. Accordingly, we design the architecture with no redundant recurrent cells so we avoid unnecessary overhead. 
    more » « less
  9. Deeper neural networks, especially those with extremely large numbers of internal parameters, impose a heavy computational burden in obtaining sufficiently high-quality results. These burdens are impeding the application of machine learning and related techniques to time-critical computing systems. To address this challenge, we are proposing an architectural approach for neural networks that adaptively trades off computation time and solution quality to achieve high-quality solutions with timeliness. We propose a novel and general framework, AnytimeNet, that gradually inserts additional layers, so users can expect monotonically increasing quality of solutions as more computation time is expended. The framework allows users to select on the fly when to retrieve a result during runtime. Extensive evaluation results on classification tasks demonstrate that our proposed architecture provides adaptive control of classification solution quality according to the available computation time. 
    more » « less