Deep optical and near-infrared imaging of the entire Galactic plane is essential for understanding our Galaxy’s stars, gas, and dust. The second data release of the Dark Energy Camera (DECam) Plane Survey extends the five-band optical and near-infrared survey of the southern Galactic plane to cover 6.5% of the sky, ∣
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract b ∣ ≤ 10°, and 6° >ℓ > −124°, complementary to coverage by Pan-STARRS1. Typical single-exposure effective depths, including crowding effects and other complications, are 23.5, 22.6, 22.1, 21.6, and 20.8 mag ing ,r ,i ,z , andY bands, respectively, with around 1″ seeing. The survey comprises 3.32 billion objects built from 34 billion detections in 21,400 exposures, totaling 260 hr open shutter time on the DECam at Cerro Tololo. The data reduction pipeline features several improvements, including the addition of synthetic source injection tests to validate photometric solutions across the entire survey footprint. A convenient functional form for the detection bias in the faint limit was derived and leveraged to characterize the photometric pipeline performance. A new postprocessing technique was applied to every detection to debias and improve uncertainty estimates of the flux in the presence of structured backgrounds, specifically targeting nebulosity. The images and source catalogs are publicly available athttp://decaps.skymaps.info/ . -
Abstract In 2021 May, the Dark Energy Spectroscopic Instrument (DESI) began a 5 yr survey of approximately 50 million total extragalactic and Galactic targets. The primary DESI dark-time targets are emission line galaxies, luminous red galaxies, and quasars. In bright time, DESI will focus on two surveys known as the Bright Galaxy Survey and the Milky Way Survey. DESI also observes a selection of “secondary” targets for bespoke science goals. This paper gives an overview of the publicly available pipeline (
desitarget ) used to process targets for DESI observations. Highlights include details of the different DESI survey targeting phases, the targeting ID (TARGETID ) used to define unique targets, the bitmasks used to indicate a particular type of target, the data model and structure of DESI targeting files, and examples of how to access and use thedesitarget code base. This paper will also describe “supporting” DESI target classes, such as standard stars, sky locations, and random catalogs that mimic the angular selection function of DESI targets. The DESI target-selection pipeline is complex and sizable; this paper attempts to summarize the most salient information required to understand and work with DESI targeting data. -
ABSTRACT We present the steps taken to produce a reliable and complete input galaxy catalogue for the Dark Energy Spectroscopic Instrument (DESI) Bright Galaxy Survey (BGS) using the photometric Legacy Survey DR8 DECam. We analyse some of the main issues faced in the selection of targets for the DESI BGS, such as star–galaxy separation, contamination by fragmented stars and bright galaxies. Our pipeline utilizes a new way to select BGS galaxies using Gaia photometry and we implement geometrical and photometric masks that reduce the number of spurious objects. The resulting catalogue is cross-matched with the Galaxy And Mass Assembly (GAMA) survey to assess the completeness of the galaxy catalogue and the performance of the target selection. We also validate the clustering of the sources in our BGS catalogue by comparing with mock catalogues and the Sloan Digital Sky Survey (SDSS) data. Finally, the robustness of the BGS selection criteria is assessed by quantifying the dependence of the target galaxy density on imaging and other properties. The largest systematic correlation we find is a 7 per cent suppression of the target density in regions of high stellar density.
-
Abstract We present a catalog of 536 fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst (CHIME/FRB) Project between 400 and 800 MHz from 2018 July 25 to 2019 July 1, including 62 bursts from 18 previously reported repeating sources. The catalog represents the first large sample, including bursts from repeaters and nonrepeaters, observed in a single survey with uniform selection effects. This facilitates comparative and absolute studies of the FRB population. We show that repeaters and apparent nonrepeaters have sky locations and dispersion measures (DMs) that are consistent with being drawn from the same distribution. However, bursts from repeating sources differ from apparent nonrepeaters in intrinsic temporal width and spectral bandwidth. Through injection of simulated events into our detection pipeline, we perform an absolute calibration of selection effects to account for systematic biases. We find evidence for a population of FRBs—composing a large fraction of the overall population—with a scattering time at 600 MHz in excess of 10 ms, of which only a small fraction are observed by CHIME/FRB. We infer a power-law index for the cumulative fluence distribution of
, consistent with the −3/2more »