skip to main content

Search for: All records

Creators/Authors contains: "Li, Cuihua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The impact of extreme heat on crop yields is an increasingly pressing issue given anthropogenic climate warming. However, some of the physical mechanisms involved in these impacts remain unclear, impeding adaptation-relevant insight and reliable projections of future climate impacts on crops. Here, using a multiple regression model based on observational data, we show that while extreme dry heat steeply reduced U.S. corn and soy yields, humid heat extremes had insignificant impacts and even boosted yields in some areas, despite having comparably high dry-bulb temperatures as their dry heat counterparts. This result suggests that conflating dry and humid heat extremes may lead to underestimated crop yield sensitivities to extreme dry heat. Rainfall tends to precede humid but not dry heat extremes, suggesting that multivariate weather sequences play a role in these crop responses. Our results provide evidence that extreme heat in recent years primarily affected yields by inducing moisture stress, and that the conflation of humid and dry heat extremes may lead to inaccuracy in projecting crop yield responses to warming and changing humidity.

  2. Abstract By summer 2021 moderate to exceptional drought impacted 28% of North America, focused west of the Mississippi, with serious impacts on fire, water resources, and agriculture. Here, using reanalyses and SST-forced climate models, we examine the onset and development of this southwestern drought from its inception in summer 2020 through winter and spring 2020/21. The drought severity in summer 2021 resulted from four consecutive prior seasons in which precipitation in the southwest United States was the lowest on record or, at least, extremely dry. The dry conditions in summer 2020 arose from internal atmospheric variability but are beyond the range of what the studied atmosphere models simulate for that season. From winter 2020 through spring 2021 the worsening drought conditions were guided by the development of a La Niña in the tropical Pacific Ocean. Decadal variability in the Pacific Ocean aided drought in the southern part of the region by driving the cool season to be drier during the last two decades. There is also evidence that the southern part of the region in spring is drying due to human-driven climate change. In sum the drought onset was driven by a combination of internal atmospheric variability and interannual climatemore »variability and aided by natural decadal variability and human-driven climate change.« less
    Free, publicly-accessible full text available November 15, 2023
  3. Abstract During the summer, the Midwest United States, which covers the main US corn belt, has a net loss of surface water as evapotranspiration exceeds precipitation. The net moisture gain into the atmosphere is transported out of the region to northern high latitudes through transient eddy moisture fluxes. How this process may change in the future is not entirely clear despite the fact that the corn belt region is responsible for a large portion of the global supply of corn and soybeans. We find that increased CO2 and the associated warming increases evapotranspiration. while precipitation reduces in the region leading to further reduction in precipitation minus evaporation (P-E) in the future. At the same time, the poleward transient moisture flux increases leading to enhanced atmospheric moistures export from the corn belt region. However, storm track intensity is generally weakened in the summer due to reduced north-south temperature gradient associated with amplified warming in the midlatitudes. The intensified transient eddy moisture transport as storm track weakens can be reconciled by the stronger mean moisture gradient in the future. This is found to be caused by the climatological low-level jet transporting more moisture into the Great Plains region due to the thermodynamicmore »mechanism under warmer conditions. Our results, for the first time, show that in the future, the US Midwest corn belt will experience more hydrological stress due to intensified transient eddy moisture export leading to drier soils in the region.« less