skip to main content

Search for: All records

Creators/Authors contains: "Li, Xiaoming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Population mobility and aging at local areas contributed to the geospatial disparities in the coronavirus disease 2019 (COVID-19) transmission among 418 counties in the Deep South. In predicting the incidence of COVID-19, a significant interaction was found between mobility and the proportion of older adults. Effective disease control measures should be tailored to vulnerable communities.

    more » « less
  2. Abstract Shaped by human movement, place connectivity is quantified by the strength of spatial interactions among locations. For decades, spatial scientists have researched place connectivity, applications, and metrics. The growing popularity of social media provides a new data stream where spatial social interaction measures are largely devoid of privacy issues, easily assessable, and harmonized. In this study, we introduced a global multi-scale place connectivity index (PCI) based on spatial interactions among places revealed by geotagged tweets as a spatiotemporal-continuous and easy-to-implement measurement. The multi-scale PCI, demonstrated at the US county level, exhibits a strong positive association with SafeGraph population movement records (10% penetration in the US population) and Facebook’s social connectedness index (SCI), a popular connectivity index based on social networks. We found that PCI has a strong boundary effect and that it generally follows the distance decay, although this force is weaker in more urbanized counties with a denser population. Our investigation further suggests that PCI has great potential in addressing real-world problems that require place connectivity knowledge, exemplified with two applications: (1) modeling the spatial spread of COVID-19 during the early stage of the pandemic and (2) modeling hurricane evacuation destination choice. The methodological and contextual knowledge of PCI, together with the open-sourced PCI datasets at various geographic levels, are expected to support research fields requiring knowledge in human spatial interactions. 
    more » « less
  3. Introduction Widespread problems of psychological distress have been observed in many countries following the outbreak of COVID-19, including Australia. What is lacking from current scholarship is a national-scale assessment that tracks the shifts in mental health during the pandemic timeline and across geographic contexts. Methods Drawing on 244 406 geotagged tweets in Australia from 1 January 2020 to 31 May 2021, we employed machine learning and spatial mapping techniques to classify, measure and map changes in the Australian public’s mental health signals, and track their change across the different phases of the pandemic in eight Australian capital cities. Results Australians’ mental health signals, quantified by sentiment scores, have a shift from pessimistic (early pandemic) to optimistic (middle pandemic), reflected by a 174.1% (95% CI 154.8 to 194.5) increase in sentiment scores. However, the signals progressively recessed towards a more pessimistic outlook (later pandemic) with a decrease in sentiment scores by 48.8% (95% CI 34.7 to 64.9). Such changes in mental health signals vary across capital cities. Conclusion We set out a novel empirical framework using social media to systematically classify, measure, map and track the mental health of a nation. Our approach is designed in a manner that can readily be augmented into an ongoing monitoring capacity and extended to other nations. Tracking locales where people are displaying elevated levels of pessimistic mental health signals provide important information for the smart deployment of finite mental health services. This is especially critical in a time of crisis during which resources are stretched beyond normal bounds. 
    more » « less
  4. Yang, Chaowei (Ed.)
    In response to the soaring needs of human mobility data, especially during disaster events such as the COVID-19 pandemic, and the associated big data challenges, we develop a scalable online platform for extracting, analyzing, and sharing multi-source multi-scale human mobility flows. Within the platform, an origin-destination-time (ODT) data model is proposed to work with scalable query engines to handle heterogenous mobility data in large volumes with extensive spatial coverage, which allows for efficient extraction, query, and aggregation of billion-level origin-destination (OD) flows in parallel at the server-side. An interactive spatial web portal, ODT Flow Explorer, is developed to allow users to explore multi-source mobility datasets with user-defined spatiotemporal scales. To promote reproducibility and replicability, we further develop ODT Flow REST APIs that provide researchers with the flexibility to access the data programmatically via workflows, codes, and programs. Demonstrations are provided to illustrate the potential of the APIs integrating with scientific workflows and with the Jupyter Notebook environment. We believe the platform coupled with the derived multi-scale mobility data can assist human mobility monitoring and analysis during disaster events such as the ongoing COVID-19 pandemic and benefit both scientific communities and the general public in understanding human mobility dynamics. 
    more » « less
  5. null (Ed.)
  6. Gao, Song (Ed.)
    The current COVID-19 pandemic raises concerns worldwide, leading to serious health, economic, and social challenges. The rapid spread of the virus at a global scale highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has proven to be associated with viral transmission. In this study, we analyzed over 580 million tweets worldwide to see how global collaborative efforts in reducing human mobility are reflected from the user-generated information at the global, country, and U.S. state scale. Considering the multifaceted nature of mobility, we propose two types of distance: the single-day distance and the cross-day distance. To quantify the responsiveness in certain geographic regions, we further propose a mobility-based responsive index (MRI) that captures the overall degree of mobility changes within a time window. The results suggest that mobility patterns obtained from Twitter data are amenable to quantitatively reflect the mobility dynamics. Globally, the proposed two distances had greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-19 as a pandemic. The considerably less periodicity after the declaration suggests that the protection measures have obviously affected people’s travel routines. The country scale comparisons reveal the discrepancies in responsiveness, evidenced by the contrasting mobility patterns in different epidemic phases. We find that the triggers of mobility changes correspond well with the national announcements of mitigation measures, proving that Twitter-based mobility implies the effectiveness of those measures. In the U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the impacts vary substantially among states. 
    more » « less
  7. null (Ed.)
    Background Population mobility is closely associated with COVID-19 transmission, and it could be used as a proximal indicator to predict future outbreaks, which could inform proactive nonpharmaceutical interventions for disease control. South Carolina is one of the US states that reopened early, following which it experienced a sharp increase in COVID-19 cases. Objective The aims of this study are to examine the spatial-temporal relationship between population mobility and COVID-19 outbreaks and use population mobility data to predict daily new cases at both the state and county level in South Carolina. Methods This longitudinal study used disease surveillance data and Twitter-based population mobility data from March 6 to November 11, 2020, in South Carolina and its five counties with the largest number of cumulative confirmed COVID-19 cases. Population mobility was assessed based on the number of Twitter users with a travel distance greater than 0.5 miles. A Poisson count time series model was employed for COVID-19 forecasting. Results Population mobility was positively associated with state-level daily COVID-19 incidence as well as incidence in the top five counties (ie, Charleston, Greenville, Horry, Spartanburg, and Richland). At the state level, the final model with a time window within the last 7 days had the smallest prediction error, and the prediction accuracy was as high as 98.7%, 90.9%, and 81.6% for the next 3, 7, and 14 days, respectively. Among Charleston, Greenville, Horry, Spartanburg, and Richland counties, the best predictive models were established based on their observations in the last 9, 14, 28, 20, and 9 days, respectively. The 14-day prediction accuracy ranged from 60.3%-74.5%. Conclusions Using Twitter-based population mobility data could provide acceptable predictions of COVID-19 daily new cases at both the state and county level in South Carolina. Population mobility measured via social media data could inform proactive measures and resource relocations to curb disease outbreaks and their negative influences. 
    more » « less
  8. null (Ed.)
    Abstract Numerous ecosystem manipulative experiments have been conducted since 1970/80 s to elucidate responses of terrestrial carbon cycling to the changing atmospheric composition (CO 2 enrichment and nitrogen deposition) and climate (warming and changing precipitation regimes), which is crucial for model projection and mitigation of future global change effects. Here, we extract data from 2,242 publications that report global change manipulative experiments and build a comprehensive global database with 5,213 pairs of samples for plant production (productivity, biomass, and litter mass) and ecosystem carbon exchange (gross and net ecosystem productivity as well as ecosystem and soil respiration). Information on climate characteristics and vegetation types of experimental sites as well as experimental facilities and manipulation magnitudes subjected to manipulative experiments are also included in this database. This global database can facilitate the estimation of response and sensitivity of key terrestrial carbon-cycling variables under future global change scenarios, and improve the robust projection of global change‒terrestrial carbon feedbacks imposed by Earth System Models. 
    more » « less
  9. null (Ed.)
    Background Human movement is one of the forces that drive the spatial spread of infectious diseases. To date, reducing and tracking human movement during the COVID-19 pandemic has proven effective in limiting the spread of the virus. Existing methods for monitoring and modeling the spatial spread of infectious diseases rely on various data sources as proxies of human movement, such as airline travel data, mobile phone data, and banknote tracking. However, intrinsic limitations of these data sources prevent us from systematic monitoring and analyses of human movement on different spatial scales (from local to global). Objective Big data from social media such as geotagged tweets have been widely used in human mobility studies, yet more research is needed to validate the capabilities and limitations of using such data for studying human movement at different geographic scales (eg, from local to global) in the context of global infectious disease transmission. This study aims to develop a novel data-driven public health approach using big data from Twitter coupled with other human mobility data sources and artificial intelligence to monitor and analyze human movement at different spatial scales (from global to regional to local). Methods We will first develop a database with optimized spatiotemporal indexing to store and manage the multisource data sets collected in this project. This database will be connected to our in-house Hadoop computing cluster for efficient big data computing and analytics. We will then develop innovative data models, predictive models, and computing algorithms to effectively extract and analyze human movement patterns using geotagged big data from Twitter and other human mobility data sources, with the goal of enhancing situational awareness and risk prediction in public health emergency response and disease surveillance systems. Results This project was funded as of May 2020. We have started the data collection, processing, and analysis for the project. Conclusions Research findings can help government officials, public health managers, emergency responders, and researchers answer critical questions during the pandemic regarding the current and future infectious risk of a state, county, or community and the effectiveness of social/physical distancing practices in curtailing the spread of the virus. International Registered Report Identifier (IRRID) DERR1-10.2196/24432 
    more » « less