skip to main content

Search for: All records

Creators/Authors contains: "Li, Zhi-Yun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    Stars form from the gravitational collapse of turbulent, magnetized molecular cloud cores. Our non-ideal MHD simulations reveal that the intrinsically anisotropic magnetic resistance to gravity during the core collapse naturally generates dense gravomagneto sheetlets within inner protostellar envelopes – disrupted versions of classical sheet-like pseudo-discs. They are embedded in a magnetically dominant background, where less dense materials flow along the local magnetic field lines and accumulate in the dense sheetlets. The sheetlets, which feed the disc predominantly through its upper and lower surfaces, are the primary channels for mass and angular momentum transfer from the envelope to the disc. The protostellar disc inherits a small fraction (up to 10 per cent) of the magnetic flux from the envelope, resulting in a disc-averaged net vertical field strength of 1–10 mG and a somewhat stronger toroidal field, potentially detectable through ALMA Zeeman observations. The inherited magnetic field from the envelope plays a dominant role in disc angular momentum evolution, enabling the formation of gravitationally stable discs in cases where the disc field is relatively well-coupled to the gas. Its influence remains significant even in marginally gravitationally unstable discs formed in the more magnetically diffusive cases, removing angular momentum at a rate comparable to or greater than that caused by spiral arms. The magnetically driven disc evolution is consistent with the apparent scarcity of prominent spirals capable of driving rapid accretion in deeply embedded protostellar discs. The dense gravomagneto sheetlets observed in our simulations may correspond to the ‘accretion streamers’ increasingly detected around protostars.

    more » « less

    We use the polaris radiative transfer code to produce simulated circular polarization Zeeman emission maps of the cyanide (CN) J = 1–0 molecular line transition for two types of protostellar envelope magnetohydrodynamic simulations. Our first model is a low-mass disc envelope system (box length L = 200 au), and our second model is the envelope of a massive protostar (L = 104 au) with a protostellar wind and a CN-enhanced outflow shell. We compute the velocity-integrated Stokes I and V, as well as the implied V/I polarization percentage, for each detector pixel location in our simulated emission maps. Our results show that both types of protostellar environments are in principle accessible with current circular polarization instruments, with each containing swaths of envelope area that yield percentage polarizations that exceed the 1.8 per cent nominal sensitivity limit for circular polarization experiments with the Atacama Large Millimeter/submillimeter Array. In both systems, high-polarization (≳1.8 per cent) pixels tend to lie at an intermediate distance away from the central star and where the line-centre opacity of the CN emission is moderately optically thin (τLC ∼ 0.1–1). Furthermore, our computed V/I values scale roughly with the density-weighted mean line-of-sight magnetic field strength, indicating that Zeeman observations can effectively diagnose the strength of envelope-scale magnetic fields. We also find that pixels with large V/I are preferentially co-located where the absolute value of the velocity-integrated V is also large, suggesting that locations with favourable percentage polarization are also favourable in terms of raw signal.

    more » « less
  3. Abstract

    We present a statistical characterization of circumstellar disk orientations toward 12 protostellar multiple systems in the Perseus molecular cloud using the Atacama Large Millimeter/submillimeter Array at Band 6 (1.3 mm) with a resolution of ∼25 mas (∼8 au). This exquisite resolution enabled us to resolve the compact inner-disk structures surrounding the components of each multiple system and to determine the projected 3D orientation of the disks (position angle and inclination) to high precision. We performed a statistical analysis on the relative alignment of disk pairs to determine whether the disks are preferentially aligned or randomly distributed. We considered three subsamples of the observations selected by the companion separationsa< 100 au,a> 500 au, anda< 10,000 au. We found for the compact (<100 au) subsample, the distribution of orientation angles is best described by an underlying distribution of preferentially aligned sources (within 30°) but does not rule out distributions with 40% misaligned sources. The wide companion (>500 au) subsample appears to be consistent with a distribution of 40%–80% preferentially aligned sources. Similarly, the full sample of systems with companions (a< 10,000 au) is most consistent with a fractional ratio of at most 80% preferentially aligned sources and rules out purely randomly aligned distributions. Thus, our results imply the compact sources (<100 au) and the wide companions (>500 au) are statistically different.

    more » « less

    The internal velocity structure within dense gaseous cores plays a crucial role in providing the initial conditions for star formation in molecular clouds. However, the kinematic properties of dense gas at core scales (∼0.01−0.1 pc) has not been extensively characterized because of instrument limitations until the unique capabilities of GBT-Argus became available. The ongoing GBT-Argus Large Program, Dynamics in Star-forming Cores (DiSCo) thus aims to investigate the origin and distribution of angular momentum of star-forming cores. DiSCo will survey all starless cores and Class 0 protostellar cores in the Perseus molecular complex down to ∼0.01 pc scales with <0.05 km s−1 velocity resolution using the dense gas tracer N2H+. Here, we present the first data sets from DiSCo towards the B1 and NGC 1333 regions in Perseus. Our results suggest that a dense core’s internal velocity structure has little correlation with other core-scale properties, indicating these gas motions may be originated externally from cloud-scale turbulence. These first data sets also reaffirm the ability of GBT-Argus for studying dense core velocity structure and provided an empirical basis for future studies that address the angular momentum problem with a statistically broad sample.

    more » « less

    Recent high angular resolution ALMA observations have revealed numerous gaps in protoplanetary discs. A popular interpretation has been that planets open them. Most previous investigations of planet gap-opening have concentrated on viscous discs. Here, we carry out 2D (axisymmetric) global simulations of gap opening by a planet in a wind-launching non-ideal MHD disc with consistent thermochemistry. We find a strong concentration of poloidal magnetic flux in the planet-opened gap, where the gas dynamics are magnetically dominated. The magnetic field also drives a fast (nearly sonic) meridional gas circulation in the denser disc regions near the inner and outer edges of the gap, which may be observable through high-resolution molecular line observations. The gap is more ionized than its denser surrounding regions, with a better magnetic field–matter coupling. In particular, it has a much higher abundance of molecular ion HCO+, consistent with ALMA observations of the well-studied AS 209 protoplanetary disc that has prominent gaps and fast meridional motions reaching the local sound speed. Finally, we provide fitting formulae for the ambipolar and Ohmic diffusivities as a function of the disc local density, which can be used for future 3D simulations of planet gap-opening in non-ideal MHD discs where thermochemistry is too computationally expensive to evolve self-consistently with the magneto-hydrodynamics.

    more » « less
  6. Abstract We present Atacama Large Millimeter/submillimeter Array Band 3 data toward five massive young stellar objects (MYSOs), and investigate relationships between unsaturated carbon-chain species and saturated complex organic molecules (COMs). An HC 5 N ( J = 35–34) line has been detected from three MYSOs, where nitrogen (N)-bearing COMs (CH 2 CHCN and CH 3 CH 2 CN) have been detected. The HC 5 N spatial distributions show compact features and match with a methanol (CH 3 OH) line with an upper-state energy around 300 K, which should trace hot cores. The hot regions are more extended around the MYSOs where N-bearing COMs and HC 5 N have been detected compared to two MYSOs without these molecular lines, while there are no clear differences in the bolometric luminosity and temperature. We run chemical simulations of hot-core models with a warm-up stage, and compare with the observational results. The observed abundances of HC 5 N and COMs show good agreements with the model at the hot-core stage with temperatures above 160 K. These results indicate that carbon-chain chemistry around the MYSOs cannot be reproduced by warm carbon-chain chemistry, and a new type of carbon-chain chemistry occurs in hot regions around MYSOs. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  7. Abstract Crescent-shaped structures in transition disks hold the key to studying the putative companions to the central stars. The dust dynamics, especially that of different grain sizes, is important to understanding the role of pressure bumps in planet formation. In this work, we present deep dust continuum observation with high resolution toward the Oph IRS 48 system. For the first time, we are able to significantly trace and detect emission along 95% of the ring crossing the crescent-shaped structure. The ring is highly eccentric with an eccentricity of 0.27. The flux density contrast between the peak of the flux and its counterpart along the ring is ∼270. In addition, we detect a compact emission toward the central star. If the emission is an inner circumstellar disk inside the cavity, it has a radius of at most a couple of astronomical units with a dust mass of 1.5 × 10 −8 M ⊙ , or 0.005 M ⊕ . We also discuss the implications of the potential eccentric orbit on the proper motion of the crescent, the putative secondary companion, and the asymmetry in velocity maps. 
    more » « less
    Free, publicly-accessible full text available April 26, 2024

    We compare the structure of synthetic dust polarization with synthetic molecular line emission from radiative transfer calculations using a three-dimensional, turbulent collapsing-cloud magnetohydrodynamics simulation. The histogram of relative orientation (HRO) technique and the projected Rayleigh statistic (PRS) are considered. In our trans-Alfvénic (more strongly magnetized) simulation, there is a transition to perpendicular alignment at densities above ∼4 × 103 cm−3. This transition is recovered in most of our synthetic observations of optically thin molecular tracers; however, for 12CO it does not occur and the PRS remains in parallel alignment across the whole observer space. We calculate the physical depth of the optical depth τ = 1 surface and find that for 12CO it is largely located in front of the cloud mid-plane, suggesting that 12CO is too optically thick and instead mainly probes low-volume density gas. In our super-Alfvénic simulation, the magnetic field becomes significantly more tangled, and all observed tracers tend towards no preference for perpendicular or parallel alignment. An observable difference in alignment between optically thin and optically thick tracers may indicate the presence of a dynamically important magnetic field, though there is some degeneracy with viewing angle. We convolve our data with a Gaussian beam and compare it with HRO results of the Vela C molecular cloud. We find good agreement between these results and our sub-Alfvénic simulations when viewed with the magnetic field in the plane of the sky (especially when sensitivity limitations are considered), though the observations are also consistent with an intermediately inclined magnetic field.

    more » « less
  9. Abstract

    Magnetic fields play essential roles in protoplanetary disks. Magnetic fields in the disk atmosphere are of particular interest, as they are connected to the wind-launching mechanism. In this work, we study the polarization of the light scattered off of magnetically aligned grains in the disk atmosphere, focusing on the deviation of the polarization orientation from the canonical azimuthal direction, which may be detectable in near-IR polarimetry with instruments such as VLT/SPHERE. We show with a simple disk model that the polarization can even be oriented along the radial (rather than azimuthal) direction, especially in highly inclined disks with toroidally dominated magnetic fields. This polarization reversal is caused by the anisotropy in the polarizability of aligned grains and is thus a telltale sign of such grains. We show that the near-IR light is scattered mostly byμm-sized grains or smaller at theτ= 1 surface and such grains can be magnetically aligned if they contain superparamagnetic inclusions. For comparison with observations, we generate synthetic maps of the ratios ofUϕ/IandQϕ/I, which can be used to infer the existence of (magnetically) aligned grains through a negativeQϕ(polarization reversal) and/or a significant level ofUϕ/I. We show that two features observed in the existing data, an asymmetric distribution ofUϕwith respect to the disk minor axis and a spatial distribution ofUϕthat is predominantly positive or negative, are incompatible with scattering by spherical grains in an axisymmetric disk. They provide indirect evidence for scattering by aligned nonspherical grains.

    more » « less
  10. Abstract

    We use molecular line data from the Atacama Large Millimeter/submillimeter Array, Submillimeter Array, James Clerk Maxwell Telescope, and NANTEN2 to study the multiscale (∼15–0.005 pc) velocity statistics in the massive star formation region NGC 6334. We find that the nonthermal motions revealed by the velocity dispersion function (VDF) stay supersonic over scales of several orders of magnitude. The multiscale nonthermal motions revealed by different instruments do not follow the same continuous power law, which is because the massive star formation activities near central young stellar objects have increased the nonthermal motions in small-scale and high-density regions. The magnitudes of VDFs vary in different gas materials at the same scale, where the infrared dark clump N6334S in an early evolutionary stage shows a lower level of nonthermal motions than other more evolved clumps due to its more quiescent star formation activity. We find possible signs of small-scale-driven (e.g., by gravitational accretion or outflows) supersonic turbulence in clump N6334IV with a three-point VDF analysis. Our results clearly show that the scaling relation of velocity fields in NGC 6334 deviates from a continuous and universal turbulence cascade due to massive star formation activities.

    more » « less
    Free, publicly-accessible full text available May 1, 2024