skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Li, Zhu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Due to the widespread applications of high-dimensional representations in many fields, the three-dimension (3D) display technique is increasingly being used for commercial purpose in a holographic-like and immersive demonstration. However, the visual discomfort and fatigue of 3D head mounts demonstrate the limits of usage in the sphere of marketing. The compressive light field (CLF) display is capable of providing binocular and motion parallaxes by stacking multiple liquid crystal screens without any extra accessories. It leverages optical viewpoint fusion to bring an immersive and visual-pleasing experience for viewers. Unfortunately, its practical application has been limited by processing complexity and reconstruction performance. In this paper, we propose a dual-guided learning-based factorization on polarization-based CLF display with depth-assisted calibration (DAC). This substantially improves the visual performance of factorization in real-time processing. In detail, we first take advantage of a dual-guided network structure under the constraints of reconstructed and viewing images. Additionally, by utilizing the proposed DAC, we distribute each pixel on displayed screens following the real depth. Furthermore, the subjective performance is increased by using a Gauss-distribution-based weighting (GDBW) toward the concentration of the observer’s angular position. Experimental results illustrate the improved performance in qualitative and quantitative aspects over other competitive methods. A CLF prototype is assembled to verify the practicality of our factorization.

    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)