Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Haptic feedback can provide operators of hand- held robots with active guidance during challenging tasks and with critical information on environment interactions. Yet for such haptic feedback to be effective, it must be lightweight, capable of integration into a hand-held form factor, and capable of displaying easily discernible cues. We present the design and evaluation of HaPPArray — a haptic pneumatic pouch array — where the pneumatic pouches can be actuated alone or in sequence to provide information to the user. A 3x3 array of pouches was integrated into a handle, representative of an interface for a hand-held robot. When actuated individually, users were able to correctly identify the pouch being actuated with 86% accuracy, and when actuated in sequence, users were able to correctly identify the associated direction cue with 89% accuracy. These results, along with a demonstration of how the direction cues can be used for haptic guidance of a medical robot, suggest that HaPPArray can be an effective approach for providing haptic feedback for hand-held robots.more » « less
-
Concentric tube robots (CTRs) consist of a set of telescoping, pre-curved tubes, whose overall shape can be actively controlled by translating and rotating the tubes with respect to each other. The majority of CTRs to date consist of piecewise constant-curvature tubes, with a straight section followed by a single constant-curvature section. Several approaches have been proposed for CTR designs that can lead to improvements in metrics such as the workspace, orientability, dexterity, and stability. Here we propose to use CTRs with multiple constant-curvature sections. We perform two simulation studies that compare the performance of the multiple constant- curvature CTRs with standard single constant-curvature tubes. We also demonstrate how using one of the proposed multiple constant-curvature designs can enable the reduction in the number of tubes needed to achieve the same performance as a standard three-tube CTR.more » « less
-
Concentric tube robots (CTRs) show particular promise for minimally invasive surgery due to their inherent compliance and ability to navigate in constrained environments. Due to variations in anatomy among patients and variations in task requirements among procedures, it is necessary to customize the design of these robots on a patient- or population-specific basis. However, the complex kinematics and large design space make the design problem challenging. Here we propose a computational framework that can efficiently optimize a robot design and a motion plan to enable safe navigation through the patient’s anatomy. The current framework is the first fully gradient-based method for CTR design optimization and motion planning, enabling an efficient and scalable solution for simultaneously optimizing continuous variables, even across multiple anatomies. The framework is demonstrated using two clinical examples, laryngoscopy and heart biopsy, where the optimization problems are solved for a single patient and across multiple patients, respectively.more » « less
An official website of the United States government

Full Text Available