skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liu, Mingzhu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 15, 2025
  2. Abstract The giant circular photo‐galvanic effect is realized in chiral metals when illuminated by circularly polarized light. However, the structure itself is not switchable nor is the crystal chirality in the adjacent chiral domains. Here spindle‐shaped liquid crystalline elastomer microparticles that can switch from prolate to spherical to oblate reversibly upon heating above the nematic to isotropic transition temperature are synthesized. When arranged in a honeycomb lattice, the continuous shape change of the microparticles leads to lattice reconfiguration, from a right‐handed chiral state to an achiral one, then to a left‐handed chiral state, without breaking the translational symmetry. Accordingly, the sign of rotation of the polarized light passing through the lattices changes as measured by time‐domain terahertz spectroscopy. Further, it can locally alter the chirality in the adjacent domains using near‐infrared light illumination. The reconfigurable chiral microarrays will allow us to explore non‐trivial symmetry‐protected transport modes of topological lattices at the light–matter interface. Specifically, the ability to controllably create chiral states at the boundary of the achiral/chiral domains will lead to rich structures emerging from the interplay of symmetry and topology. 
    more » « less
  3. Abstract Direct ink writing of liquid crystal elastomers (LCEs) offers a new opportunity to program geometries for a wide variety of shape transformation modes toward applications such as soft robotics. So far, most 3D‐printed LCEs are thermally actuated. Herein, a 3D‐printable photoresponsive gold nanorod (AuNR)/LCE composite ink is developed, allowing for photothermal actuation of the 3D‐printed structures with AuNR as low as 0.1 wt.%. It is shown that the printed filament has a superior photothermal response with 27% actuation strain upon irradiation to near‐infrared (NIR) light (808 nm) at 1.4 W cm−2(corresponding to 160 °C) under optimal printing conditions. The 3D‐printed composite structures can be globally or locally actuated into different shapes by controlling the area exposed to the NIR laser. Taking advantage of the customized structures enabled by 3D printing and the ability to control locally exposed light, a light‐responsive soft robot is demonstrated that can climb on a ratchet surface with a maximum speed of 0.284 mm s−1(on a flat surface) and 0.216 mm s−1(on a 30° titled surface), respectively, corresponding to 0.428 and 0.324 body length per min, respectively, with a large body mass (0.23 g) and thickness (1 mm). 
    more » « less
  4. Abstract The application of Li‐metal‐anodes (LMA) can significantly improve the energy density of state‐of‐the‐art lithium ion batteries. Lots of new electrolyte systems have been developed to form a stable solid electrolyte interphase (SEI) films, thereby achieving long‐term cycle stability of LMA. Unfortunately, the common problem faced by these electrolytes is poor oxidation stability, which rarely supports the cycling of high‐voltage Li‐metal batteries (LMBs). In this work, a new single‐component solvent dimethoxy(methyl)(3,3,3‐trifluoropropyl) silane is proposed. The electrolyte composed of this solvent and 3 mLiFSI salt successfully supports the long‐term cycle stability of limited‐Li (50 µm)||high loading LiCoO2(≈20 mg cm−2) cell at 4.6 V. Experiments and theoretical research results show that the outstanding performance of the electrolyte in high‐voltage LMBs is mainly attributed to its unique solvation structures and its great ability to build a highly stable and robust interphase on the surface of LMA and high‐voltage cathodes. Interestingly, this proposed electrolyte system builds a stable SEI film rich in LiF and Li3N on the surface of LMA by improving the two‐electron reduction activity of FSIwithout adding LiNO3, the well‐known additive used for LMBs. The design idea of the proposed electrolyte can guide the development of high‐voltage LMBs. 
    more » « less