skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Liu, Rang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we investigate the potential of employing reconfigurable intelligent surface (RIS) in integrated sensing and communication (ISAC) systems. In particular, we consider an RIS-assisted ISAC system in which a multi-antenna base station (BS) simultaneously performs multi-user multi-input single-output (MU-MISO) communication and target detection. We aim to jointly design the transmit beamforming and receive filter of the BS, and the reflection coefficients of the RIS to maximize the sum-rate of the communication users, while satisfying a worst-case radar output signal-to-noise ratio (SNR), the transmit power constraint, and the unit modulus property of the reflecting coefficients. An efficient iterative algorithm based on fractional programming (FP), majorization-minimization (MM), and alternative direction method of multipliers (ADMM) is developed to solve the complicated non-convex problem. Simulation results verify the advantage of the proposed RIS-assisted ISAC scheme and the effectiveness of the developed algorithm. 
    more » « less
  2. Space-time adaptive processing (STAP) is an effective method for multi-input multi-output (MIMO) radar systems to identify moving targets in the presence of multiple interferers. The idea of joint optimization in both spatial and temporal domains for radar detection is consistent with the symbol-level precoding (SLP) technique for MIMO communication systems, that optimizes the transmit waveform according to instantaneous transmitted symbols. Therefore, in this paper we combine STAP and constructive interference (CI)-based SLP techniques to realize dual-functional radar-communication (DFRC). The radar output signal-to-interference-plus-noise ratio (SINR) is maximized by jointly optimizing the transmit waveform and receive filter, while satisfying the communication quality-of-service (QoS) constraints and the constant modulus power constraint. An efficient algorithm based on majorization-minimization (MM) and nonlinear equality constrained alternative direction method of multipliers (neADMM) methods is proposed to solve the non-convex optimization problem. Simulation results verify the effectiveness of the proposed DFRC scheme and the associate algorithm. 
    more » « less
  3. Optimally extracting the advantages available from reconfigurable intelligent surfaces (RISs) in wireless communications systems requires estimation of the channels to and from the RIS. The process of determining these channels is complicated when the RIS is composed of passive elements without any sensing or data processing capabilities, and thus, the channels must be estimated indirectly by a noncolocated device, typically a controlling base station (BS). In this article, we examine channel estimation for passive RIS-based systems from a fundamental viewpoint. We study various possible channel models and the identifiability of the models as a function of the available pilot data and behavior of the RIS during training. In particular, we will consider situations with and without line-of-sight propagation, single-antenna and multi-antenna configurations for the users and BS, correlated and sparse channel models, single-carrier and wideband orthogonal frequency-division multiplexing (OFDM) scenarios, availability of direct links between the users and BS, exploitation of prior information, as well as a number of other special cases. We further conduct simulations of representative algorithms and comparisons of their performance for various channel models using the relevant Cramér-Rao bounds. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)