skip to main content

Search for: All records

Creators/Authors contains: "Mahjouri-Samani, Masoud"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Additively manufactured electronics (AMEs), also known as printed electronics, are becoming increasingly important for the anticipated Internet of Things (IoT). This requires manufacturing technologies that allow the integration of various pure functional materials and devices onto different flexible and rigid surfaces. However, the current ink-based technologies suffer from complex and expensive ink formulation, ink-associated contaminations (additives/solvents), and limited sources of printing materials. Thus, printing contamination-free and multimaterial structures and devices is challenging. Here, a multimaterial additive nanomanufacturing (M-ANM) technique utilizing directed laser deposition at the nano and microscale is demonstrated, allowing the printing of lateral and vertical hybrid structures and devices. This M-ANM technique involves pulsed laser ablation of solid targets placed on a target carousel inside the printer head for in-situ generation of contamination-free nanoparticles, which are then guided via a carrier gas toward the nozzle and onto the surface of the substrate, where they are sintered and printed in real-time by a second laser. The target carousel brings a particular target in engagement with the ablation laser beam in predetermined sequences to print multiple materials, including metals, semiconductors, and insulators, in a single process. Using this M-ANM technique, various multimaterial devices such as silver/zinc oxide (Ag/ZnO) photodetector andmore »hybrid silver/aluminum oxide (Ag/Al2O3) circuits are printed and characterized. The quality and versatility of our M-ANM technique offer a potential manufacturing option for emerging IoT.« less
    Free, publicly-accessible full text available August 1, 2024
  2. This work presents a novel, to the best of our knowledge, cross correlation technique for determining the laser heating-induced Raman shift laser power coefficientψrequired for energy transport state-resolved Raman (ET-Raman) methods. The cross correlation method determines the measure of similarity between the experimental intensity data and a varying test Gaussian signal. By circumventing the errors inherent in any curve fittings, the cross correlation method quickly and accurately determines the location where the test Gaussian signal peak is most like the Raman peak, thereby revealing the peak location and ultimately the value ofψ. This method improves the reliability of optothermal Raman-based methods for micro/nanoscale thermal measurements and offers a robust approach to data processing through a global treatment of Raman spectra.

    Free, publicly-accessible full text available December 7, 2023
  3. Phonons are important lattice vibrations that affect the thermal, electronic, and optical properties of materials. In this work, we studied infrared phonon resonance in a prototype van der Waals (vdW) material—hexagonal boron nitride (hBN)—with the thickness ranging from monolayers to bulk, especially on ultra-thin crystals with atomic layers smaller than 20. Our combined experimental and modeling results show a systematic increase in the intensity of in-plane phonon resonance at the increasing number of layers in hBN, with a sensitivity down to one atomic layer. While the thickness-dependence of the phonon resonance reveals the antenna nature of our nanoscope, the linear thickness-scaling of the phonon polariton wavelength indicates the preservation of electromagnetic hyperbolicity in ultra-thin hBN layers. Our conclusions should be generic for fundamental resonances in vdW materials and heterostructures where the number of constituent layers can be conveniently controlled. The thickness-dependent phonon resonance and phonon polaritons revealed in our work also suggest vdW engineering opportunities for desired thermal and nanophotonic functionalities.
    Free, publicly-accessible full text available October 7, 2023
  4. Kabashin, Andrei V. ; Dubowski, Jan J. ; Geohegan, David B. ; Farsari, Maria (Ed.)
  5. Two-dimensional transition metal dichalcogenides (2D-TMDs) hold a great potential to platform future flexible optoelectronics. The beating hearts of these materials are their excitons known as XA and XB, which arise from transitions between spin-orbit split (SOS) levels in the conduction and valence bands at the K-point. The functionality of 2D-TMD-based devices is determined by the dynamics of these excitons. One of the most consequential channels of exciton decay on the device functionality is the defect-assisted recombination (DAR). Here, we employ steady-state absorption and emission spectroscopies, and pump density-dependent femtosecond transient absorption spectroscopy to report on the effect of DAR on the lifetime of excitons in monolayers of tungsten disulfide (2D-WS2) and diselenide (2D-WSe2). These pump-probe measurements suggested that while exciton decay dynamics in both monolayers are driven by DAR, in 2D-WS2, defect states near the XB exciton fill up before those near the XA exciton. However, in the 2D-WSe2 monolayer, the defect states fill up similarly. Understanding the contribution of DAR on the lifetime of excitons and the partition of this decay channel between XA and XB excitons may open new horizons for the incorporation of 2D-TMD materials in future optoelectronics.
  6. Interest in layered two-dimensional (2D) materials has been escalating rapidly over the past few decades due to their promising optoelectronic and photonic properties emerging from their atomically thin 2D structural confinements. When these 2D materials are further confined in lateral dimensions toward zero-dimensional (0D) structures, 2D nanoparticles and quantum dots with new properties can be formed. Here, we report a nonequilibrium gas-phase synthesis method for the stoichiometric formation of gallium selenide (GaSe) nanoparticles ensembles that can potentially serve as quantum dots. We show that the laser ablation of a target in an argon background gas condenses the laser-generated plume, resulting in the formation of metastable nanoparticles in the gas phase. The deposition of these nanoparticles onto the substrate results in the formation of nanoparticle ensembles, which are then post-processed to crystallize or sinter the nanoparticles. The effects of background gas pressures, in addition to crystallization/sintering temperatures, are systematically studied. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, and time-correlated single-photon counting (TCSPC) measurements are used to study the correlations between growth parameters, morphology, and optical properties of the fabricated 2D nanoparticle ensembles.