skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malek, Keyvan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The growing disparity between food supply and demand requires innovative Digital Agriculture (DA) systems to increase farm sustainability and profitability. However, current systems suffer from problems of complexity stemming from the challenge of integrating diverse, often non-interoperable hardware and software components. In order to tackle these complexities to increase farm efficiency and understand the tradeoffs of these new DA innovations we developed Realtime Optimization and Management System (ROAM), which is a decision-support system developed to find a Pareto optimal architectural design to build DA systems. To find the Pareto optimal solution, we employed the Rhodium Multi-Objective Evolutionary Algorithm (MOEA), which systematically evaluates the trade-offs in DA system designs. Based on data from five live deployments at Cornell University, each DA design can be analyzed based on user defined objectives and evaluated under uncertain farming environments with ROAM. Paired with this, we develop a web interface that allows users to define personalized decision spaces and visualize decision tradeoffs. To help validate ROAM, it was deployed to a commercial farm where the user was recommended a DA architecture design method to increase farm efficiency. ROAM allows users to quickly make key decisions in designing their DA systems to increase farm profitability. 
    more » « less
  2. The growing disparity between food supply and demand requires innovative Digital Agriculture (DA) systems to increase farm sustainability and profitability. However, current systems suffer from problems of complexity. To increase farm efficiency and understand the tradeoffs of these new DA innovations we developed ROAM, which is a decision support system developed to find a Pareto optimal architectural design to build DA systems. Based on data from five live deployments at Cornell University, each DA design can be analyzed based on user defined metrics and evaluated under uncertain farming environments with ROAM. Paired with this, we develop a web interface that allows users to define personalized decision spaces and to visualize decision tradeoffs. To help validate ROAM, it was deployed to a commercial farm where the user was recommended a method to increase farm efficiency. ROAM allows users to quickly make key decisions in designing their DA systems to increase farm profitability. 
    more » « less
  3. null (Ed.)
  4. Abstract Irrigated agriculture in snow-dependent regions contributes significantly to global food production. This study quantifies the impacts of climate change on irrigated agriculture in the snow-dependent Yakima River Basin (YRB) in the Pacific Northwest United States. Here we show that increasingly severe droughts and temperature driven reductions in growing season significantly reduces expected annual agricultural productivity. The overall reduction in mean annual productivity also dampens interannual yield variability, limiting yield-driven revenue fluctuations. Our findings show that farmers who adapt to climate change by planting improved crop varieties may potentially increase their expected mean annaul productivity in an altered climate, but remain strongly vulnerable to irrigation water shortages that substantially increase interannual yield variability (i.e., increasing revenue volatility). Our results underscore the importance for crop adaptation strategies to simultaneously capture the biophysical effects of warming as well as the institutional controls on water availability. 
    more » « less
  5. Abstract. Water management substantially alters natural regimes ofstreamflow through modifying retention time and water exchanges amongdifferent components of the terrestrial water cycle. Accurate simulation ofwater cycling in intensively managed watersheds, such as the Yakima River basin (YRB) in the Pacific Northwest of the US, faces challenges inreliably characterizing influences of management practices (e.g., reservoiroperation and cropland irrigation) on the watershed hydrology. Using the Soiland Water Assessment Tool (SWAT) model, we evaluated streamflow simulationsin the YRB based on different reservoir operation and irrigation schemes.Simulated streamflow with the reservoir operation scheme optimized by theRiverWare model better reproduced measured streamflow than the simulationusing the default SWAT reservoir operation scheme. Scenarios with irrigationpractices demonstrated higher water losses through evapotranspiration (ET)and matched benchmark data better than the scenario that only consideredreservoir operations. Results of this study highlight the importance ofreliably representing reservoir operations and irrigation management forcredible modeling of watershed hydrology. The methods and findings presentedhere hold promise toenhance water resources assessment that can be applied to other intensively managed watersheds. 
    more » « less