skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mamun, Abdullah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. FuSE-MET addresses critical challenges in deploying human activity recognition (HAR) systems in uncontrolled environments by effectively managing noisy labels, sparse data, and undefined activity vocabularies. By integrating BERT-based word embeddings with domain-specific knowledge (i.e., MET values), FuSE-MET optimizes label merging, reducing label complexity and improving classification accuracy. Our approach outperforms the state-of-the-art techniques, including ChatGPT-4, by balancing semantic meaning and physical intensity. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  2. Submitted for Journal Publication Also available as arXiv preprint arXiv:2403.06456, 2024 
    more » « less
  3. Abstract We report threshold voltage (VTH) control in ultrawide bandgap Al0.4Ga0.6N-channel metal oxide semiconductor heterostructure field-effect transistors using a high-temperature (300 °C) anneal of the high-kZrO2gate-insulator. Annealing switched the polarity of the fixed charges at the ZrO2/AlGaN interface from +5.5 × 1013cm−2to −4.2 × 1013cm−2, pinningVTHat ∼ (−12 V), reducing gate leakage by ∼103, and improving subthreshold swing 2× (116 mV decade−1). It also enabled the gate to repeatedly withstand voltages from −40 to +18 V, allowing the channel to be overdriven doubling the peak currents to ∼0.5 A mm−1
    more » « less
  4. Missing data is a very common challenge in health monitoring systems and one reason for that is that they are largely dependent on different types of sensors. A critical characteristic of the sensor-based prediction systems is their dependency on hardware, which is prone to physical limitations that add another layer of complexity to the algorithmic component of the system. For instance, it might not be realistic to assume that the prediction model has access to all sensors at all times. This can happen in the real-world setup if one or more sensors on a device malfunction or temporarily have to be disabled due to power limitations. The consequence of such a scenario is that the model faces ``missing input data'' from those unavailable sensors at the deployment time, and as a result, the quality of prediction can degrade significantly. While the missing input data is a very well-known problem, to the best of our knowledge, no study has been done to efficiently minimize the performance drop when one or more sensors may be unavailable for a significant amount of time. The sensor failure problem investigated in this paper can be viewed as a spatial missing data problem, which has not been explored to date. In this work, we show that the naive known methods of dealing with missing input data such as zero-filling or mean-filling are not suitable for sensor-based prediction and we propose an algorithm that can reconstruct the missing input data for unavailable sensors. Moreover, we show that on the MobiAct, MotionSense, and MHEALTH activity classification benchmarks, our proposed method can outperform the baselines by large accuracy margins of 8.2%, 15.1%, and 11.6%, respectively. 
    more » « less
  5. Physical activity is a cornerstone of chronic conditions and one of the most critical factors in reducing the risks of cardiovascular diseases, the leading cause of death in the United States. App-based lifestyle interventions have been utilized to promote physical activity in people with or at risk for chronic conditions. However, these mHealth tools have remained largely static and do not adapt to the changing behavior of the user. In a step toward designing adaptive interventions, we propose BeWell24Plus, a framework for monitoring activity and user engagement and developing computational models for outcome prediction and intervention design. In particular, we focus on devising algorithms that combine data about physical activity and engagement with the app to predict future physical activity performance. Knowing in advance how active a person is going to be in the next day can help with designing adaptive interventions that help individuals achieve their physical activity goals. Our technique combines the recent history of a person's physical activity with app engagement metrics such as when, how often, and for how long the app was used to forecast the near future's activity. We formulate the problem of multimodal activity forecasting and propose an LSTM-based realization of our proposed model architecture, which estimates physical activity outcomes in advance by examining the history of app usage and physical activity of the user. We demonstrate the effectiveness of our forecasting approach using data collected with 58 prediabetic people in a 9-month user study. We show that our multimodal forecasting approach outperforms single-modality forecasting by 2.2$ to 11.1% in mean-absolute-error. 
    more » « less
  6. null (Ed.)