Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2025
-
Software developers often struggle to update APIs, leading to manual, time-consuming, and error-prone processes. We introduce Melt, a new approach that generates lightweight API migration rules directly from pull requests in popular library repositories. Our key insight is that pull requests merged into open-source libraries are a rich source of information sufficient to mine API migration rules. By leveraging code examples mined from the library source and automatically generated code examples based on the pull requests, we infer transformation rules in Comby, a language for structural code search and replace. Since inferred rules from single code examples may be too specific, we propose a generalization procedure to make the rules more applicable to client projects. Melt rules are syntax-driven, interpretable, and easily adaptable. Moreover, unlike previous work, our approach enables rule inference to seamlessly integrate into the library workflow, removing the need to wait for client code migrations. We evaluated Melt on pull requests from four popular libraries, successfully mining 461 migration rules from code examples in pull requests and 114 rules from auto-generated code examples. Our generalization procedure increases the number of matches for mined rules by 9×. We applied these rules to client projects and ran their tests, which led to an overall decrease in the number of warnings and fixing some test cases demonstrating MELT's effectiveness in real-world scenarios.more » « less
-
Heuristics are ubiquitous in computer systems. Examples include congestion control, adaptive bit rate streaming, scheduling, load balancing, and caching. In some domains, theoretical proofs have provided clarity on the conditions where a heuristic is guaranteed to work well. This has not been possible in all domains because proving such guarantees can involve combinatorial reasoning making it hard, cumbersome and error-prone. In this paper we argue that computers should help humans with the combinatorial part of reasoning. We model reasoning questions as ∃∀ formulas [1] and solve them using the counterexample guided inductive synthesis (CEGIS) framework. As preliminary evidence, we prototype CCmatic, a tool that semi-automatically synthesizes congestion control algorithms that are provably robust. It rediscovered a recent congestion control algorithm that provably achieves high utilization and bounded delay under a challenging network model. It also found previously unknown variants of the algorithm that achieve different throughput-delay trade-offs.more » « less
-
Large language models have shown a propensity for generating correct, multi-line programs from natural language prompts. Given past findings highlighting that bugs and patches can be distinguished by predictability according to simple language models, it is natural to ask if modern, large neural options lend themselves especially well to program repair without any calibration. We study this in the context of one-line bugs, providing a series of models of varying scales (from 160M to 12B parameters) with the context preceding a buggy line in 72 Java and Python programs and analyze the rank at which the correct patch (and original buggy line) is generated, if at all. Our results highlight a noticeable correlation of model size with test-passing accuracy and patch ranking quality, as well as several other findings related to the differences between the two languages and the propensity for especially the largest models to generate candidate patches that closely resemble (if not exactly match), the original developer patch.more » « less
-
Congestion Control Algorithms (CCAs) impact numerous desirable Internet properties such as performance, stability, and fairness. Hence, the networking community invests substantial effort into studying whether new algorithms are safe for wide-scale deployment. However, operators today are continuously innovating and some deployed CCAs are unpublished - either because the CCA is in beta or because it is considered proprietary. How can the networking community evaluate these new CCAs when their inner workings are unknown? In this paper, we propose 'counterfeit congestion control algorithms' - reverse-engineered implementations derived using program synthesis based on observations of the original implementation. Using the counterfeit (synthesized) CCA implementation, researchers can then evaluate the CCA using controlled empirical testbeds or mathematical analysis, even without access to the original implementation. Our initial prototype, 'Mister 880,' can synthesize several basic CCAs including a simplified Reno using only a few traces.more » « less
-
null (Ed.)Today's distributed systems are increasingly complex, leading to subtle bugs that are difficult to detect with standard testing methods. Formal verification can provably rule out such bugs, but historically it has been excessively labor intensive. For distributed systems, recent work shows that, given a correct inductive invariant, nearly all other proof work can be automated; however, the construction of such invariants is still a difficult manual task. In this paper, we demonstrate a new methodology for automating the construction of inductive invariants, given as input a (formal) description of the distributed system and a desired safety condition. Our system performs an exhaustive search within a given space of candidate invariants in order to find and verify inductive invariants which suffice to prove the safety condition. Central to our ability to search efficiently is our algorithm's ability to learn from counterexamples whenever a candidate fails to be invariant, allowing us to check the remaining candidates more efficiently. We hypothesize that many distributed systems, even complex ones, may have concise invariants that make this approach practical, and in support of this, we show that our system is able to identify and verify inductive invariants for the Paxos protocol, which proved too complex for previous work.more » « less
-
Today's distributed systems are increasingly complex, leading to subtle bugs that are difficult to detect with standard testing methods. Formal verification can provably rule out such bugs, but historically it has been excessively labor intensive. For distributed systems, recent work shows that, given a correct inductive invariant, nearly all other proof work can be automated; however, the construction of such invariants is still a difficult manual task. In this paper, we demonstrate a new methodology for automating the construction of inductive invariants, given as input a (formal) description of the distributed system and a desired safety condition. Our system performs an exhaustive search within a given space of candidate invariants in order to find and verify inductive invariants which suffice to prove the safety condition. Central to our ability to search efficiently is our algorithm's ability to learn from counterexamples whenever a candidate fails to be invariant, allowing us to check the remaining candidates more efficiently. We hypothesize that many distributed systems, even complex ones, may have concise invariants that make this approach practical, and in support of this, we show that our system is able to identify and verify inductive invariants for the Paxos protocol, which proved too complex for previous work.more » « less