skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matveev, Konstantin I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Acoustic oscillations in cryogenic systems can either be imposed intentionally, as in pulse-tube cryocoolers, or occur spontaneously due to Taconis-type thermoacoustic instabilities. To predict the propagation of sound waves in ducts with sudden changes in cross-sectional areas, minor losses associated with such transitions in oscillatory flows must be known. However, the current modeling approaches usually rely on correlations for minor loss coefficients obtained in steady flows, which may not accurately represent minor losses in sound waves. In this study, high-fidelity computational fluid dynamics simulations are undertaken for acoustic oscillations at transitions between tubes of different diameters filled with cryogenic hydrogen. The variable parameters include the tube diameter ratios, temperatures (80 K and 30 K), and acoustic impedances corresponding to standing and traveling waves. Computational simulation results are compared with reduced-order acoustic models to develop corrections for minor loss coefficients that describe transition losses in sound waves more precisely. The present findings can improve the accuracy of design calculations for acoustic cryocoolers and predictions of Taconis instabilities. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Using hydrogen as a working fluid in cryocoolers can potentially benefit cryocooling technologies and hydrogen liquefaction. Moreover, in flow-through thermoacoustic systems, hydrogen can be efficiently cooled and undergo ortho-parahydrogen isomeric conversion, which is important for the efficient storage of cryogenic hydrogen. A traveling-wave regenerator is analyzed in this study, using the thermoacoustic theory with a superimposed mean flow and an empirical correlation for hydrogen isomer conversion. A regenerator with hydrogen fluid is shown to achieve higher performance in comparison with helium as the working fluid. However, the hydrogen system performance degrades at supercritical pressures and subcritical temperatures in compressed liquid states. In regenerators with mean flow, using hydrogen as the working fluid leads to higher cooling powers and efficiencies, but helium systems are able to achieve colder temperatures. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Free, publicly-accessible full text available October 1, 2025
  4. Hydrogen can become a prevalent renewable fuel in the future green economy, but technical and economic hurdles associated with handling hydrogen must be overcome. To store and transport hydrogen in an energy-dense liquid form, very cold temperatures, around 20 K, are required. Evaporation affects the achievable mass flow rate during the high-speed transfer of hydrogen at large pressure differentials, and accurate prediction of this process is important for the practical design of hydrogen transfer systems. Computational fluid dynamics modeling of two-phase hydrogen flow is carried out in the present study using the volume-of-fluid method and the Lee relaxation model for the phase change. Suitable values of the relaxation time parameter are determined by comparing numerical results with test data for high-speed two-phase hydrogen flows in a configuration involving a tube with sudden expansion, which is common in practical systems. Simulations using a variable outlet pressure are conducted to demonstrate the dependence of flow rates on the driving pressure differential, including the attainment of the critical flow regime. Also shown are computational results for flows with various inlet conditions and a fixed outlet state. Field distributions of the pressure, velocity, and vapor fractions are presented for several flow regimes. 
    more » « less
  5. Taconis oscillations represent excitation of acoustic modes due to large thermal gradients inside narrow tubes penetrating cryogenic vessels from a warm ambient environment. These oscillations are usually harmful, as they may drastically increase heat leakage into cryogenic vessels and result in strong vibrations of measuring instruments. Placing a porous material inside a tube with a goal to increase acoustic damping or attaching a small resonator to the main tube are some of the possible ways to suppress or mitigate Taconis effects. However, when the porous inserts are positioned in locations with large temperature gradients or the resonator parameters are selected incorrectly, these components may augment thermal-to-acoustic energy conversion and enhance Taconis oscillations. A low-amplitude thermoacoustic model has been extended and applied in this study to determine the effects of the insert location and pore radius, as well as the resonator dimensions, on the onset of Taconis phenomena in a hydrogen-filled tube of relevance to lines used in cryogenic hydrogen storage tanks. The presented findings can assist cryogenic specialists interested in suppressing or exciting Taconis oscillations. 
    more » « less
  6. Hydrogen represents a promising renewable fuel, and its broad application can lead to drastic reductions in greenhouse gas emissions. Keeping hydrogen in liquid form helps achieve high energy density, but also requires cryogenic conditions for storage as hydrogen evaporates at temperatures of about 20 K, which can lead to a large pressure build-up in the tank. This paper addresses the unsteady thermal modeling of cryogenic tanks with liquid hydrogen. Considering the liquid and vapor phases in the tank as two nodes with averaged properties, a lumped-element method of low computational cost is developed and used for simulating two regimes: self-pressurization (also known as autogenous pressurization, or pressure build-up in the closed tank due to external heat leaks) and constant-pressure venting (when some hydrogen is let out of the tank to maintain pressure at a fixed level). The model compares favorably (within several percent for pressure) to experimental observations for autogenous pressurization in a NASA liquid hydrogen tank. The two processes of interest in this study are numerically investigated in tanks of similar shapes but different sizes ranging from about 2 to 1200 m3. Pressure and temperature growth rates are characterized in closed tanks, where the interfacial mass transfer manifests initial condensation followed by more pronounced evaporation. In tanks where pressure is kept fixed by venting some hydrogen from the vapor domain of the tank, the initial venting rate significantly exceeds evaporation rate, but after a settling period, magnitudes of both rates approach each other and continue evolving at a slower pace. The largest tank demonstrates a six-times-lower pressure rise than the smallest tank over a 100 h period. The relative boil-off losses in continuously vented tanks are found to be approximately proportional to the inverse of the tank diameter, thus generally following simple Galilean scaling with a few percent deviation due to scale effects. The model developed in this work is flexible for analyzing a variety of processes in liquid hydrogen storage systems, raising efficiencies, which is critically important for a future economy based on renewable energy. 
    more » « less
  7. Hydrodynamic performance of ships can be greatly improved by the formation of air cavities under ship bottom with the purpose to decrease water friction on the hull surface. The air-cavity ships using this type of drag reduction are usually designed for and typically effective only in a relatively narrow range of speeds and hull attitudes and sufficient rates of air supply to the cavity. To investigate the behavior of a small-scale air-cavity boat operating under both favorable and detrimental loading and speed conditions, a remotely controlled model hull was equipped with a data acquisition system, video camera and onboard sensors to measure air-cavity characteristics, air supply rate and the boat speed, thrust and trim in operations on open-water reservoirs. These measurements were captured by a data logger and also wirelessly transmitted to a ground station and video monitor. The experimental air-cavity boat was tested in a range of speeds corresponding to length Froude numbers between 0.17 and 0.5 under three loading conditions, resulting in near zero trim and significant bow-up and bow-down trim angles at rest. Reduced cavity size and significantly increased drag occurred when operating at higher speeds, especially in the bow-up trim condition. The other objective of this study was to determine whether computational fluid dynamics simulations can adequately capture the recorded behavior of the boat and air cavity. A computational software Star-CCM+ was utilized with the VOF method employed for multi-phase flow, RANS approach for turbulence modeling, and economical mesh settings with refinements in the cavity region and near free surface. Upon conducting the mesh verification study, several experimental conditions were simulated, and approximate agreement with measured test data was found. Adaptive mesh refinement and time step controls were also applied to compare results with those obtained on the user-generated mesh. Adaptive controls improved resolution of complex shedding patterns from the air cavity but had little impact on overall results. The presented here experimental approach and obtained results indicate that both outdoor experimentation and computationally inexpensive modeling can be used in the process of developing air-cavity systems for ship hulls. 
    more » « less
  8. null (Ed.)
  9. null (Ed.)