skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mutlu, Zafer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigated the formation of Schottky barriers at the interface between rare-earth tritelluride (RTe3) crystals and n-type silicon (n-Si) substrates. This study explores the rectifying characteristics of RTe3/n-Si junctions (R = Dy, Ho, Er) and their relation to the charge density wave (CDW) transition. Using the thermionic emission model, we analyzed current–voltage (I–V) measurements to obtain the Schottky barrier height (ϕSBH) and the ideality factor (η). The temperature dependence of the extracted ϕSBH and η reveals kink features near the CDW transition temperature. The Schottky–Mott model is employed to explain these kink features in the derivatives of ϕSBH and 1/η and attributes them to changes in the work function of RTe3 during the CDW transition. Our findings suggest that Schottky junctions can be utilized to probe the electronic states of RTe3, enabling potential RTe3 device applications in electronics and optoelectronics. 
    more » « less
    Free, publicly-accessible full text available April 14, 2026
  2. Graphene nanoribbons (GNRs), when synthesized with atomic precision by bottom–up chemical approaches, possess tunable electronic structure, and high theoretical mobility, conductivity, and heat dissipation capabilities, which makes them an excellent candidate for channel material in post-silicon transistors. Despite their immense potential, achieving highly transparent contacts for efficient charge transport—which requires proper contact selection and a deep understanding of the complex one-dimensional GNR channel-three-dimensional metal contact interface—remains a challenge. In this study, we investigated the impact of different electron-beam deposited contact metals—the commonly used palladium (Pd) and softer metal indium (In)—on the structural properties and field-effect transistor performance of semiconducting nine-atom wide armchair GNRs. The performance and integrity of the GNR channel material were studied by means of a comprehensive Raman spectroscopy analysis, scanning tunneling microscopy (STM) imaging, optical absorption calculations, and transport measurements. We found that, compared to Pd, In contacts facilitate favorable Ohmic-like transport because of the reduction of interface defects, while the edge structure quality of GNR channel plays a more dominant role in determining the overall device performance. Our study provides a blueprint for improving device performance through contact engineering and material quality enhancements in emerging GNR-based technology. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract Nanoporous graphene (NPG) can exhibit a uniform electronic band gap and rationally‐engineered emergent electronic properties, promising for electronic devices such as field‐effect transistors (FETs), when synthesized with atomic precision. Bottom‐up, on‐surface synthetic approaches developed for graphene nanoribbons (GNRs) now provide the necessary atomic precision in NPG formation to access these desirable properties. However, the potential of bottom‐up synthesized NPG for electronic devices has remained largely unexplored to date. Here, FETs based on bottom‐up synthesized chevron‐type NPG (C‐NPG), consisting of ordered arrays of nanopores defined by laterally connected chevron GNRs, are demonstrated. C‐NPG FETs show excellent switching performance with on–off ratios exceeding 104, which are tightly linked to the structural quality of C‐NPG. The devices operate as p‐type transistors in the air, while n‐type transport is observed when measured under vacuum, which is associated with reversible adsorption of gases or moisture. Theoretical analysis of charge transport in C‐NPG is also performed through electronic structure and transport calculations, which reveal strong conductance anisotropy effects in C‐NPG. The present study provides important insights into the design of high‐performance graphene‐based electronic devices where ballistic conductance and conduction anisotropy are achieved, which could be used in logic applications, and ultra‐sensitive sensors for chemical or biological detection. 
    more » « less
  6. Abstract The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom‐up fabrication based on molecular precursors. This approach offers a unique platform for all‐carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5‐atom wide armchair GNRs (5‐AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5‐AGNRs are obtained via on‐surface synthesis under ultrahigh vacuum conditions from Br‐ and I‐substituted precursors. It is shown that the use of I‐substituted precursors and the optimization of the initial precursor coverage quintupled the average 5‐AGNR length. This significant length increase allowed the integration of 5‐AGNRs into devices and the realization of the first field‐effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub‐nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs. 
    more » « less