Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Realizing compact and scalable Ising machines that are compatible with CMOS-process technology is crucial to the effectiveness and practicality of using such hardware platforms for accelerating computationally intractable problems. Besides the need for realizing compact Ising spins, the implementation of the coupling network, which describes the spin interaction, is also a potential bottleneck in the scalability of such platforms. Therefore, in this work, we propose an Ising machine platform that exploits the novel behavior of compact bi-stable CMOS-latches (cross-coupled inverters) as classical Ising spins interacting through highly scalable and CMOS-process compatible ferroelectric-HfO 2 -based Ferroelectric FETs (FeFETs) which act as coupling elements. We experimentally demonstrate the prototype building blocks of this system, and evaluate the scaling behavior of the system using simulations. Our work not only provides a pathway to realizing CMOS-compatible designs but also to overcoming their scaling challenges.Free, publicly-accessible full text available December 1, 2024
-
Free, publicly-accessible full text available June 1, 2024
-
Free, publicly-accessible full text available April 1, 2024
-
Free, publicly-accessible full text available December 3, 2023
-
Abstract Existing circuit camouflaging techniques to prevent reverse engineering increase circuit-complexity with significant area, energy, and delay penalty. In this paper, we propose an efficient hardware encryption technique with minimal complexity and overheads based on ferroelectric field-effect transistor (FeFET) active interconnects. By utilizing the threshold voltage programmability of the FeFETs, run-time reconfigurable inverter-buffer logic, utilizing two FeFETs and an inverter, is enabled. Judicious placement of the proposed logic makes it act as a hardware encryption key and enable encoding and decoding of the functional output without affecting the critical path timing delay. Additionally, a peripheral programming scheme for reconfigurable logic by reusing the existing scan chain logic is proposed, obviating the need for specialized programming logic and circuitry for keybit distribution. Our analysis shows an average encryption probability of 97.43% with an increase of 2.24%/ 3.67% delay for the most critical path/ sum of 100 critical paths delay for ISCAS85 benchmarks.Free, publicly-accessible full text available December 1, 2023
-
On the Write Schemes and Efficiency of FeFET 1T NOR Array for Embedded Nonvolatile Memory and BeyondFree, publicly-accessible full text available December 3, 2023
-
Free, publicly-accessible full text available November 1, 2023
-
Free, publicly-accessible full text available October 1, 2023
-
Free, publicly-accessible full text available January 1, 2024