Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 28, 2026
- 
            Free, publicly-accessible full text available April 28, 2026
- 
            Interactive visualization interfaces enable users to efficiently explore, analyze, and make sense of their datasets. However, as data grows in size, it becomes increasingly challenging to build data interfaces that meet the interface designer’s desired latency expectations and resource constraints. Cloud DBMSs, while optimized for scalability, often fail to meet latency expectations, necessitating complex, bespoke query execution and optimization techniques for data interfaces. This involves manually navigating a huge optimization space that is sensitive to interface design and resource constraints, such as client vs server data and compute placement, choosing which computations are done offline vs online, and selecting from a large library of visualization-optimized data structures. This paper advocates for a Physical Visualization Design (PVD) tool that decouples interface design from system design to provide design independence. Given an interfaces underlying data flow, interactions with latency expectations, and resource constraints, PVD checks if the interface is feasible and, if so, proposes and instantiates a middleware architecture spanning the client, server, and cloud DBMS that meets the expectations. To this end, this paper presents Jade, the first prototype PVD tool that enables design independence. Jade proposes an intermediate representation called Diffplans to represent the data flows, develops cost estimation models that trade off between latency guarantees and plan feasibility, and implements an optimization framework to search for the middleware architecture that meets the guarantees. We evaluate Jade on six representative data interfaces as compared to Mosaic and Azure SQL database. We find Jade supports a wider range of interfaces, makes better use of available resources, and can meet a wider range of data, latency, and resource conditions.more » « lessFree, publicly-accessible full text available June 20, 2026
- 
            Free, publicly-accessible full text available November 4, 2025
- 
            Commercial retrospective video analytics platforms have increasingly adopted general interfaces to support the custom queries and convolutional neural networks (CNNs) that different applications require. However, existing optimizations were designed for settings where CNNs were platform- (not user-) determined, and fail to meet at least one of the following key platform goals when that condition is violated: reliable accuracy, low latency, and minimal wasted work. We present Boggart, a system that simultaneously meets all three goals while supporting the generality that today’s platforms seek. Prior to queries being issued, Boggart carefully employs traditional computer vision algorithms to generate indices that are imprecise, but are fundamentally comprehensive across different CNNs/queries. For each issued query, Boggart employs new techniques to quickly characterize the imprecision of its index, and sparingly run CNNs (and propagate results to other frames) in a way that bounds accuracy drops. Our results highlight that Boggart’s improved generality comes at low cost, with speedups that match (and most often, exceed) prior, model-specific approaches.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available