Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Webs give a diagrammatic calculus for spaces of $$U_{q}(\mathfrak{sl}_{r})$$-tensor invariants, but intrinsic characterizations of web bases are only known in certain cases. Recently, we introduced hourglass plabic graphs to give the first such $$U_{q}(\mathfrak{sl}_{4})$$-web bases. Separately, Fraser introduced a web basis for Plücker degree two representations of arbitrary $$U_{q}(\mathfrak{sl}_{r})$$. Here, we show that Fraser’s basis agrees with that predicted by the hourglass plabic graph framework and give an intrinsic characterization of the resulting webs. A further compelling feature with many applications is that our bases exhibit rotation-invariance. Together with the results of our earlier paper, this implies that hourglass plabic graphs give a uniform description of all known rotation-invariant $$U_{q}(\mathfrak{sl}_{r})$$-web bases. Moreover, this provides a single combinatorial model simultaneously generalizing the Tamari lattice, the alternating sign matrix lattice, and the lattice of plane partitions. As a part of our argument, we develop properties of square faces in arbitrary hourglass plabic graphs, a key step in our program towards general $$U_{q}(\mathfrak{sl}_{r})$$-web bases.more » « lessFree, publicly-accessible full text available July 3, 2026
-
Chow rings of flag varieties have bases of Schubert cycles \sigma_u, indexed by permutations. A major problem of algebraic combinatorics is to give a positive combinatorial formula for the structure constants of this basis. The celebrated Littlewood-Richardson rules solve this problem for special products \sigma_u \cdot \sigma_v where u and v are p-Grassmannian permutations. Building on work of Wyser, we introduce backstable clans to prove such a rule for the problem of computing the product \sigma_u \cdot \sigma_v when u is p-inverse Grassmannian and v is q-inverse Grassmannian. By establishing several new families of linear relations among structure constants, we further extend this result to obtain a positive combinatorial rule for \sigma_u \cdot \sigma_v in the case that u is covered in weak Bruhat order by a p-inverse Grassmannian permutation and v is a q-inverse Grassmannian permutation.more » « lessFree, publicly-accessible full text available December 3, 2025
-
Webs yield an especially important realization of certain Specht modules, irreducible representations of symmetric groups, as they provide a pictorial basis with a convenient diagrammatic calculus. In recent work, the last three authors associated polynomials to noncrossing partitions without singleton blocks, so that the corresponding polynomials form a web basis of the pennant Specht module S(d,d,1n−2d). These polynomials were interpreted as global sections of a line bundle on a 2-step partial flag variety. Here, we both simplify and extend this construction. On the one hand, we show that these polynomials can alternatively be situated in the homogeneous coordinate ring of a Grassmannian, instead of a 2-step partial flag variety, and can be realized as tensor invariants of classical (but highly nonplanar) tensor diagrams. On the other hand, we extend these ideas from the pennant Specht module S(d,d,1n−2d) to more general flamingo Specht modules S(dr,1n−rd). In the hook case r=1, we obtain a spanning set that can be restricted to a basis in various ways. In the case r>2, we obtain a basis of a well-behaved subspace of S(dr,1n−rd), but not of the entire module.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Matrix Schubert varieties are affine varieties arising in the Schubert calculus of the complete flag variety. We give a formula for the Castelnuovo–Mumford regularity of matrix Schubert varieties, answering a question of Jenna Rajchgot. We follow her proposed strategy of studying the highest-degree homogeneous parts of Grothendieck polynomials, which we call Castelnuovo–Mumford polynomials. In addition to the regularity formula, we obtain formulas for the degrees of all Castelnuovo–Mumford polynomials and for their leading terms, as well as a complete description of when two Castelnuovo–Mumford polynomials agree up to scalar multiple. The degree of the Grothendieck polynomial is a new permutation statistic which we call the Rajchgot index; we develop the properties of Rajchgot index and relate it to major index and to weak order.more » « less
-
null (Ed.)Abstract We introduce two new bases of the ring of polynomials and study their relations to known bases. The first basis is the quasi-Lascoux basis, which is simultaneously both a $$K$$ -theoretic deformation of the quasi-key basis and also a lift of the $$K$$ -analogue of the quasi-Schur basis from quasi-symmetric polynomials to general polynomials. We give positive expansions of this quasi-Lascoux basis into the glide and Lascoux atom bases, as well as a positive expansion of the Lascoux basis into the quasi-Lascoux basis. As a special case, these expansions give the first proof that the $$K$$ -analogues of quasi-Schur polynomials expand positively in multifundamental quasi-symmetric polynomials of T. Lam and P. Pylyavskyy. The second new basis is the kaon basis, a $$K$$ -theoretic deformation of the fundamental particle basis. We give positive expansions of the glide and Lascoux atom bases into this kaon basis. Throughout, we explore how the relationships among these $$K$$ -analogues mirror the relationships among their cohomological counterparts. We make several “alternating sum” conjectures that are suggestive of Euler characteristic calculations.more » « less
-
null (Ed.)Abstract One of the oldest outstanding problems in dynamical algebraic combinatorics is the following conjecture of P. Cameron and D. Fon-Der-Flaass (1995): consider a plane partition P in an $$a \times b \times c$$ box $${\sf B}$$ . Let $$\Psi (P)$$ denote the smallest plane partition containing the minimal elements of $${\sf B} - P$$ . Then if $p= a+b+c-1$ is prime, Cameron and Fon-Der-Flaass conjectured that the cardinality of the $$\Psi $$ -orbit of P is always a multiple of p . This conjecture was established for $$p \gg 0$$ by Cameron and Fon-Der-Flaass (1995) and for slightly smaller values of p in work of K. Dilks, J. Striker and the second author (2017). Our main theorem specializes to prove this conjecture in full generality.more » « less
An official website of the United States government

Full Text Available